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Part 1

Introduction

We shall start with the question:
What is homological algebra?

Let’s take a look at its origin, topology.

Let fo, fi : X = Y be two continuous maps between two topological spaces X and Y. We say
that fo is homotopic to fi, written as fo ~ fi if there exists a continuous map h: X x [0,1] = Y,
such that h|x .y = fi for t = 0,1. This map h is called a homotopy between fo and f;.

We can define the (classical) homotopy category Ho (Top) of topological spaces by

Ob (Ho (Top)) = Ob(Top) .

Hompo(top) (X, Y) = [X, Y] :=the set of homotopy classes of maps from X to Y.

The iso-class of a space in Ho (Top) is called a homotopy type.

Remark. Homotopy category is much smaller than Top. Passing to homotopy types we ignore local

properties of spaces. In this way, we simplify spaces.
Example. The solid torus S! x D? is homotopic to the circle S*.
This point of view provides us a similar idea to understand homological algebra.

Homological algebra is a way to “simplify” algebraic structure (such as groups, modules,
rings, etc. ) in the same way homotopy theory simplifies topological spaces. It is the way
of assigning “homotopy types” to each object. The goal is to study homotopy-invariant

functors on algebraic objects.

If we have a functor F' : Top — A where A can be the category of abelian groups or vector spaces

which perseveres homotopy types, i.e. this functor can be factorized through Ho (Top),

F: Top A

~ 7

Ho(Top)




such a functor is called a homotopic functor.
Similarly, if we have a homotopic functor F' : C — A where C is some algebraic category, we
shall have
F: C A

o~

Ho (C) = D (C)

where D (C) is the derived category.

Example. The Ext and Tor functor.

Theory of Linear Differential Equations from Homological Point of View.

We shall look at the following classical example in linear PDEs to see the importance of homological

algebra. We will come back to this example later in class from time to time.

Example. Let X C C" be an open subset, n > 1. O = 0% (X) is the commutative ring of analytic
functions defined on X. D = D" (X) is the non-commutative ring (and in fact an algebra) of linear

differential operators with coefficients in O. In standard coordinates,

pgo[a a}

ox1’ Oz,

(this bracket notation is not correct because the differential operators are not commutative, but we

abuse the notation for simplification) where E%i are the linear differential operators

8_: O — O

f(xlv"'wrn) — %(%1,"',%’”)

Thus a linear differential operator P on X is just an element in D in the form

N 8 (51 a in
P(.T,a): Z ail...a“L(xl’.."xn)(a;pl) <8x> .
il,“'yin n

2 2
For instance, the Laplacian operator A,, = <%) + -4 <62ﬂ) .




A linear differential equation can be regarded as a kernel of such an operator,

Pu=0 (1)

where u is the unknown function, u € O or u € C*° (X) or u € D! (X).

A system of linear differential equations can be as a kernel of a system of operators,

!
0 .
Pu =0, orZBj<x,&C>uj=o,z:1,m,k (2)
7j=1
where w = (uq,--- ,u;) are unknown functions.

In general, the system makes sense for u living in any (left) D-modules.

Given any S € D — Mod, we define the solution set as
Solp (S) = {u: (ug, - ) € S :IP’uzO}.

Definition 0.1. Two systems of type [2] are equivalent if for every S € D — Mod, the solution sets

are the same, i.e.

P ~ P <= Solp (S) = Solp (S),VS € D — Mod.

Note that equivalent systems may have very different presentations in terms of matrix differential

operations.

Example 0.1. If n =21 = 1, the following two systems of linear differential equations are equiva-

lent.

ou __
Bz =0

du _

or; ,

P o and P':Q 0u _

Oxzo

Ou _

Oxa 2u n P 0
Ox10x2 ox3

Problem. Is there an invariant way to present systems of linear PDEs?



Definition 0.2. We can define the solution functor for system

Solp: D —Mod — Vecte
S +— Solp(S)
(sLs) = (solp (5) 22U g1, (5’))
where the map Solp (5) Solelf), Solp (S) is given by (u1,---,u;) — (f(u1), -+, f(w)). Here
(f (u1), -+, f(w)) is a solution in Solp (S’) because f is a morphism between D-modules and it

commutes with P.
This definition says that P ~ P’ if and only if Solp 2 Solps as functors.

Definition 0.3. A functor F' : C — Sets is representable if F' = Home (Xp, —) = hx, for some

Xp.

Remark 0.1. In the next chapter we will study category theory and Yoneda’s lemma, and from the
latter we will know that if two functors F' and F’ are representable, then F' = F’ if and only if

XFgXF“

Claim 0.1. The functor Solp is representable.

Proof. Define the matrix

P= (Pij)kxl S Mathl (D)

and the vectors

Uy
— : l
u = : es,
uy

then we can rewrite Pu in a matrix form. Consider the map

p: pk L pl
(ut, - yug) = (wPu+- ugPr, )



where DF =D @ --- @ D. Notice that ¢ is a homomorphism of left D-modules. Indeed, Va € D,
k

o (auy,--- auy) = (aur Pip + - + aupPry, -+ ) = a - @ (ug, -+, ug)
Define Mp := Coker (p) = D!/D* . P. When k = [ = 1, this is Mp = D/D - P. We claim that Solp

is representable via Mp,

Sol[p = Homp (MP, —) .

Consider the exact sequence

Dk & Dl Mp — 0.

Fix any S € D — Mod and apply Homyp (—, S), we get a long exact sequence

The isomorphism Homp (D', S) =, Slis given by <Dl ER S) — (f(e1), -+, f(e)) whereey, -+, ¢

is the standard basis of D!. Therefore
Homp (Mp, S) = ker (IP’ R Sk> =: Solp (S5) .

O

Moral. D-modules of the form M = Coker [Dk — Dl] are coherent and they are the correct way to

represent systems of linear differential equations. In this language, solution sets are interpreted
as Homp (M, S).
Need of Homological Algebra

Given a D-module M and decompose it into M7 C M — M /My =: My. We will get a short exact
sequence

00— M — M — My — 0.

10



The natural question is, can we recover the information about solution of M in terms of solutions

of My and Ms,? The answer is no, unless we do homological algebra.

Example 0.2. Let P = A - B be an operator where A = 9:28%1 -2 B = 6%2, then P =

Oxo’

Tagale— — 88—;%. In this case, My = D/D-A,Mp = D/D - B and Mp = D/D - P. We have the

following short exact sequence

0> My — Mp— Mg — 0.

One of the main theorem of homological algebra is the existence of higher derived functors

]EXt%(]\4vi):Z)*l\/IO(:l*)\/eCtC7 n:O,l,"-,

such that
1. Ext) (M, ) = Homp (M, —).

2. Ext%} (M, —) are characterized by the following long exact sequence
0——s Homp (MQ, S) _— Homp (M, S) —_— Homp (Ml, S)

Extp (Mz, S) —— Extp, (M, S) — Extp, (M;,S) —— -+

Moral. To study linear differential equations, we need to introduce “higher” solution spaces in S:
{Ext} (M, S)},~0- In fact, it is natural to organize these spaces and the homology of a chain

complex RHomp (M, S),

RHomp (M, —) : Com (D — Mod) — Com (Vecty) .

Question. Given a system [2, when does it have a finite-dimensional space of analytic solution?

Answer. When M is a holonomic D-module, i.e. Exth (M, O) = 0,Vi # n where n = dim C".

11



1 CATEGORIES AND FUNCTORS

Part 11

Preliminaries

Plans for next three lectures:

e Categories. Basic constructions.

Functors and morphisms of functors.

Yoneda lemma. Representable functors. Examples.

Limits and colimits. Adjoint functors.

e Kan-extensions.

1 Categories and Functors

1.1 Categories

Definition 1.1. A category C consists of the following data:
e A class of objects denoted Ob (C)
e A class of morphisms denoted Mor (C)

such that for all f € Mor (C), there exits unique objects X = s (f), the source of f, and Y = ¢(f),
the target of f, and write Home (X,Y) = {f € Mor (C) : s(f) = X and ¢(f) = Y}. Equivalently,
for every ordered pair (X,Y") of objects in C, Home (X,Y") is defined. A morphism f in Home (X,Y)
is denoted f: X — Y.

This data must satisfy the following axioms:

e For any ordered triple (X,Y,Z) € Ob(C) there is a map called “o”

o: Home (X,Y) x Home (Y, Z) — Home (X, Z)
((XLY),(Y&Z)) — (gof;XLYiZ)

12



1.1 Categories 1 CATEGORIES AND FUNCTORS

e For every X € Ob (C), there exists Idx € Home (X, X) such that Idx o f = f and goldx = ¢
forall f: Y — X and forallg: X — Y.

Remark 1.1. A convenient way to organize this data is as the pullback diagram

Mor(C) xMor (C) — Mor (C)

i )

Mor (C) — Ob (C)

where our data is described by

Mor (C) X op(c) Mor (C) 5 Mor (C) = Ob (C).

Example 1.1. Roughly, examples can be divided into three groups.

1. Categories C whose objects are sets with additional structure and morphisms are maps of sets
preserving that structure. Examples of these categories include
e Set the category of sets and set functions.
e Top the category of topological spaces and continuous maps.
e Gr the category of groups and group homomorphisms.
e Ab the sub category of Gr of abelian groups.
e Ring the category of rings and ring homomorphisms.
e Vect; the category of vector spaces over a field k£ and linear maps.

e A — Mod and Mod—A the category of left modules and the category of right modules

respectively over a ring A and module homomorphisms.

e Alg; the category of algebras over a field kand field homomorphisms.

2. Categories C whose objects are still sets with some extra structure but the morphisms are not

maps of sets. Examples of these categories include

e Ho(Top) the category of topological spaces and homotopy classes of maps.

13



1.1 Categories 1 CATEGORIES AND FUNCTORS

e Fun (C, D) the category of functors and natural transformations.
3. Categories C corresponding to algebraic structures. Examples of these categories include

e Monmnoids are categories with exactly one object.

e Groupoids are categories in which every morphism is invertible. For example, a group

considered as a one object category with its elements as morphisms is a groupoid.

e Poset Given a preordered set (I, <), define a category I by declaring that Ob (I) =T and

0, zfy

—>a 'I'Sy

e A topological space X gives rise to a category Open(X) whose objects are open subsets
of X and

), U¢v
HomOpen(X) (U’ V) =

—, UCV.

e A guiver is a directed graph. A quiver ) defines a category whose objects are the vertices
of @ and morphisms are paths connecting vertices. The following special examples of

quivers will appear later in the course

(a) The pullback quiver { @ —— e <——eo }.
(b) The push-out quiver { e <—— o —— o }.

(c) The equalizer quiver { e ——= o }.

Example 1.2. The cosimplicial category, denoted A, is defined by

Ob(A) = {[n] ={0,1,...,n}},50
Homa ([n], [m]) = {f : [n] — [m]: f()) < f(5) if i <j}.

A geometric realization of the cosimplicial category is the category whose objects are geometric

simplicies A". Recall that A" is the convex hull of unit vectors eg, €1, ..., e, in R"*1. Morphisms

14



1.1 Categories 1 CATEGORIES AND FUNCTORS

between geometric simplicies are given by
Homa (A", A™) = {linear maps f : R"™t — R"*! gending e; — ef(i)} .

It is worth noting that co—categories can be thought of as simplicial sets. That is, as a contravariant
functor A°? — Set satisfying (weak) Kan extension condition.

Definition 1.2. A category is called small if Ob (C) is a set.

Remark 1.2. Set is not a small category. Other categories that are not small include Gr, Ring,
Ab. One can enlarge the “universe” of sets and add one axiom to the standard axiomatics that
requires every set X to belong to some universe & and declare that X' is U—small if X' = X for

some X € U. A precise discussion of this construction can be found in [SGA4].
Definition 1.3. A category is locally small if Home (X,Y) is a set for every X, Y € Ob (C).
Definition 1.4. A morphism f: X — Y in C is

e an isomorphism if there exists a morphism ¢g : Y — X such that fg = Idy and ¢gf = Idx.

e an endomorphism if X =Y.

e an automorphim if X =Y and f is an isomorphism.

e a monomorphism (or monic) if for any parallel pair: g1,92 : Z — X, fo g1 = f o go implies

that g1 = go. Equivalently, f is monic if the map

fo—:Home (Z,X) — Home (Z,X)

is injective.

e an epimorphism (or epi) if for any parallel pair: g1,92: Y — Z, g1 o f = g2 o f implies that

g1 = g2. Equivalently, f is epi if the map
— o0 f : Homc (Y, Z) — Homc (X, Z)

is injective.

15



1.2 Functors 1 CATEGORIES AND FUNCTORS

Example 1.3. In the first class of examples from Example 1.3, monics are injective maps of the
underlying sets. However, this is not the case for epimorphisms. For example, in the category
Ring of unital rings, and the category of (Hausdorfl) topological space, the map Z — Q is an

epimorphism in the respective categories but is set theoretically not surjective.

Definition 1.5. An object in C is called initial, denoted (), if for every X € Ob (C) there exists a
unique morphism f : ) — X. It is terminal, denoted x, if for every X € Ob (C) there exists a

unique morphism f: X — *. It is null if ) = *.

Example 1.4. In Set, the empty set is an initial object, any one-element set is a terminal object,

and there is no terminal object. In Gr the trivial group is the null object.

Remark 1.3. (Due to Quillen) In the theory of model categories, it was discovered that the existence
of null objects make homotopy theory much richer.

1.2 Functors

Given two categories C and D.

Definition 1.6. A functor F' : C — D consists of

e a map
F: Ob(C) —s Ob(D)
X — FX

e a family of maps, one for each pair (X,Y) € Ob(C) x Ob(C)

F: Home (X,Y) — Homp (FX,FY)

(X ERN Y) s (FX LER FY)

satisfying
1. F(Idx) = IdF)(,VX € Ob (C)
2. F(go f) = Fgo Ff wherever f and g are compatible maps in C.

Definition 1.7. A contravariant functor from C to D is a functor F' : C°? — D where C is the

opposite category defined by

16



1.2 Functors 1 CATEGORIES AND FUNCTORS

e Objects: Ob(C?) = Ob(C) (write X° € Ob(C?) for X € Ob(C)), and

e Morphisms: Homeor (X°,Y?) := Home (Y, X) for any X,Y € Ob(C).
Example 1.5. (Contravariant Functors)

1. op : C — C°P, this is the identity functor C? — C°P.

2. Duality * : Vect,” — Vecty, V — V* = Homy, (V, k).
Definition 1.8. A functor F': C — D is called

o faithful if VX,V € Ob(C), F : Home (X,Y) — Homp (FX, FY) is injective.

o fullif VXY € Ob(C), F : Home (X,Y) = Homp (F X, FY') is surjective.

o fully faithful if if VXY € Ob(C), F : Hom¢ (X,Y) — Homp (FX, FY) is both injective and

surjective.
e essentially surjective if VY € Ob (D), 3X € Ob(C) such that FX Y.
e conservative if f is an isomorphism in C < F' f is an isomorphism in D.
Definition 1.9. Given two categories C and D, we can define the product C x D by
e Objects: Ob(C x D) = Ob(C) x Ob(D), and

e Morphisms: Homexp ((X1,Y1), (X2,Y2)) = Home (X7, Xo) X Homp (Y1, Y2) for any X5, Xs €
Ob (C) and Yl,YQ € Ob (D)

A bifunctor is a functor F : C x D — £.

Example 1.6. For any category C we have the Hom bifunctor

Hom: C?x(C — Set

(X,Y) —— Home (X,Y)

which is contravariant in the first argument and covariant in the second argument.

17



1.3 Morphisms of Functors (Natural Transformations) 1 CATEGORIES AND FUNCTORS

1.3 Morphisms of Functors (Natural Transformations)

Let F,G : C — D be two functors.

Definition 1.10. A morphism of functors o : F = G is a collection of morphisms in D indexed by
objects in C:

satisfying (the natural property) that for any f: X — Y in C, the following diagram

FX 2. GXx

ol o

FY -2 QY
commutes in D.

Example 1.7. For each n > 1, we have a functor

GL,: CommRing — Gr
A +— GL,(4)

where GL,, (A) is the group of invertible n x n matrices with entries in A.

For n =1,

GL;: CommRing — Gr
A +—— A" = {units in A}

We have a morphism of functors det,, : GL,, = G Ly for each n > 1,

dety, = {(detn) 5 : GLn (4) = GL1 (A), M v det (M)} 1 oy CommBing) -

Compositions of Morphisms of Functors

Morphisms of functors can be composed in two ways, namely “vertical” and “horizontal” compositions

of morphisms of functors.

1. “Vertical” composition of morphisms of functors.

Given three functors Iy, Fy, F3 : C — D and two morphisms of functors « : I} = F5 and

18



1.3 Morphisms of Functors (Natural Transformations) 1 CATEGORIES AND FUNCTORS

B : Fy = F3, we can define their composition in the following manner,

o Bx
- CFX 5 Bx PX R X} ,
po {(ﬁa)x ! 2 3 xeon(e)

which can be illustrated as the following graph.

po e
\\U/B/
Fs

2. “Horizontal ” composition of morphisms of functors.
Given four functors Fi,Fy : C — D and G1,Gy : D — £ and two morphisms of functors

a: F; = Fyand §: G; = Ga,

n o

C VoD i
~—=7 ~_7
Fy Go

the composition is defined in the following manner,
Boa={(foa)y:GiF1X — GQFQX}XeOb(C)
where (8o a)y : G1F1X — G2F>X is given by the composition (8o «a)y = Br,x o Grax.

X . RX

Glé, Gl
Girax

G111 X —= G FX

lBFQX
(Boa)x "
GoFy X

Special Cases Convolutions of functors and morphisms.
1. When I} = F5 = F and a = Idp, this reduces to
G1

c-L.p s ¢
~—_*7

G2

19



1.4 Functor Categories 1 CATEGORIES AND FUNCTORS

and we use the notation

B . Brx
BoF = {(5 o F)y : GiFX 255 GgFX}XeOb(C)

2. When G; = Go = G and § = Idg, this reduces to

/Fl\
¢ JaD-Ys¢
~—7

Fy

and we use the notation

— . GQX
Goa= {(G oa)y : GFiX — GFQX}XGO[)(C)

1.4 Functor Categories

Definition 1.11. Let C be a small category (i.e. the objects in C form a set) and D be any category.

Define the functor category D¢ := Fun (C, D) with
e Objects: functors from C to D, and
e Morphisms: morphisms of functors from C to D, and
e Composition: vertical composition.
Remark 1.4. If C and D carry extra structures (e.g. additive categories) then we require the functor
in Fun (C, D) to preserve these structures.
Examples
Presheaves. Let X be a topological space. Op (X) is the category of open sets in X with
e Objects: Ob(Op (X)) ={U C X : U is open}.

b ugv
e Morphisms: Homgpx) (U, V) =

— UCV

20



1.4 Functor Categories 1 CATEGORIES AND FUNCTORS

Then Presh (X) := Fun (Op (X)? , Set) is the presheaves (of sets) over X, and AbPresh (X) :=
Fun (Op (X)?, Ab) is the category of abelian presheaves over X. Explicitly, an abelian presheaf

F on X is given by an assignment of abelian groups to every open U C X,
U— F(U)
with group homomorphism (restriction morphism) pf; : F (V) — F (U) for each U C V, such that

for any triple U C V' C W of open subsets in X, pt¥ = p; o p¥t : F (W) — F (U).

Exercise 1.1. Check that this data is precisely a functor.

Simplicial Objects. Recall that A is the cosimplicial category with
e Objects: Ob(A) = {[n]}, 5o where [n] ={0 <1<2<..- <n}
e Morphisms: f: [n] — [m] order-preserving maps of sets.

Definition 1.12. sSet := Fun (A, Set) is the category of simplicial sets. More generally, if C is

any category, we can define the category of simplicial objects in C, sC = Fun (A ().

The categories sC of simplicial objects in C are the categories where we apply homological algebra.

Algebraic Theories.  All basic algebraic categories (e.g.Gr, Ring, CommRing, Mod,---) i.e.
categories whose objects are sets with binary operations satisfying natural axioms, can be viewed

as functor categories.

Definition 1.13. An algebraic theory is a small category T equipped with finite products (see later
for precise definition) and objects {T}},~, for each natural number such that for every n, T}, is

equipped with an isomorphism T}, =N Ty x ---xT1. A T-algebra (or model for T) in a category C
N—————

n
is a functor A : T — C preserving products in the sense that the natural morphisms in C

A(Tn)—>A<T1) X---XA(Tl)

n

obtained by applying A to P,; : T, = 11,i =1,--- ,n is an isomorphism. Denote by Algs (C) the

category of T-algebras in C.

21



1.4 Functor Categories 1 CATEGORIES AND FUNCTORS

Example 1.8. Let C = Set be the category of sets. Gr is the category of groups. Let T be the

full subcategory of free groups, with objects

F, =F(z1, - ,zp),n>1

Note that there is a natural isomorphism

nu---uk =N F,, (coproduct)
—_————

n

Let F = T°P, then we claim that Algr (Set) = Gr.
Exercise 1.2. Prove Algr (Set) = Gr.

Example 1.9. Fin is the category of finite sets with objects n = {1,--- ,n} and 0 = (. Note that

for all n € N, there is a natural isomorphism

L

1U---U1

—_——
n

n.

Take T = Fin, this is the algebraic theory of commutative unital k-algebras, i.e. Algp;,or (Vecty) =

CommAlg;.

Exercise 1.3. Prove Algp;,or (Vect;) = CommAlg,.

The Center of A Category

In the definition of a functor category, consider the case when C = D and denote the identity functor

on C by Id¢. The center of a category C, denoted Z (C), is defined as

Z (C) = End (Id¢) := Hompyyc,c) (Ide, Idc) -

By definition, Z (C) is an associative unital semigroup (i.e. a monoid). One can also consider

Aut (Id¢) which is the group of isomorphisms of the identity functor.

Lemma 1.1. Z (C) is a commutative monoid. Consequently, Aut(ldc) is an abelian group.
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Proof. By definition, a morphism « : Id¢ = Id¢ is given by
a={ax: X = X}ycome
such that for any f: X — Y in C, the following diagram
X2 x
! J{f

y 2oy

commutes. Given «, 8 € Z(C), consider the diagram (3) for a with Y = X and f = Sx. Then the

commutativity of the diagram
X 25X
Bx Bx
X 25X

implies that a8 = Ba.

One interesting example is the center of a module category.

Theorem 1.1. Let R be an associative unital ring and R—Mod the category of left modules over

R. There is a natural isomorphism Z (R—Mod) = Z (R), where Z (R) is the center of the ring. In

particular, if R is commutative, then Z (R—Mod) = R.

The idea of this theorem is that commutative rings can be recovered from their module (or

representation) category.

Proof. We construct two maps which will turn out to be natural inverses:

¢:2Z(R) — Z(R—Mod)

Fix z € Z(R) and define ¢ (2) : Id¢ = Id¢ by

(e()y: M — M
p(z) =
m +— zm
MecOb(R—Mod)
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Note that ¢ (z),, is well defined because for all 7 € R and for all m € M, ¢ (z),; (rm) = z (rm) =
(zr)ym = (rz)m = r(zm). To see that ¢ (z) is well-defined as a morphism between the identity

functor, we need verify that for every f: M — N in R—Mod, the diagram

/—\
)
By
w
N
=
IS

M M

Y : Z(R—Mod) —» Z (R) (5)

Fix o : Ide = Id¢ given by a = {ap : M — M}MGOb(RfMod) and consider ag : R — R. Define
Y (a) = ar(lr) € R. We will show that indeed ar(1g) € Z(R). Fix any r € R and define

f:R— R by x— xr. Since f is a morphism in R—Mod, the diagram

R-2E._p

! !

R R
commutes. In particular, it implies that ar (1g)r = f(ar(1r)) = ar(f(1r)) = agr(r) =
rag (1g). Thus the map v is well defined. One can easily show that ¢ and v are inverse to

each other. 0

Remark. The category C = R—Mod discussed in this example is an additive category so each
Homp (M, N) is an abelian group. This can be used to define an additive structure on Z (C) by

(o + B)yy = am + B for every M € Ob(C).

1.5 Equivalence of Categories

It seems natural to say that a functor F': C — D is an isomorphism of categories if there exists a
functor G : D — C such that Go F = Id¢ and F' o G = Idp. However, this is a useless notion in

mathematical practice. Unless C =D and F = Id¢, this notion does not occur in nature.

Remark. (Due to V. Voevodski) In Type theory, categories viewed up to isomorphism are called

24



1.5 Equivalence of Categories 1 CATEGORIES AND FUNCTORS

pre-categories.

The correct notion of equivalence of categories is based on the notion of an isomorphism of

functors.

Definition 1.14. Let F,G : C —> D be two functors. A morphism of functors o : F' = G is an
isomorphism if there exists § : G = F such that af = Idg and fa = Idg, where Idp : F = F'is

given by (Idr)y = Idpx for every X € Ob(C).

Lemma 1.2. A morphism o : F = G s an isomorphism if and only if for any X € Ob(C),

ax : FX — GX is an isomorphism in D.

Proof. “« =7 If a : F' = (G is an isomorphism, there exists § : G — F such that fa = Idg and
af = Idg, i.e. fxax = ldpx and axfx = ldgx for any X € Ob(C). In particular, ax is an
isomorphism in D for any X € Ob(C).

“ =" 1f for any X € Ob(C), ay : F(X) — G (X) is an isomorphism in D, let fx = ay' :
GX — FX. We need to check that g : G — F is a morphism of functors. Given f: X — Y, the
diagram

FX 2. GXx

ol o

FY 2> Gy
commutes, which implies that

ax X px

Gfl J/Ff
ay ory

commutes, whence  is a morphism of functors. O

Exercise 1.4. Prove the lemma.

Definition 1.15. A functor F' : C — D is called an equivalence of categories if there exists a
functor G : D — C together with isomorphisms of functors such that F oG = Idp and Go F' = Id¢.
Two categories C and D are said to be equivalent, written C — D, if there exists an equivalence of

categories F' : C — D.

Remark 1.5. The functor G in the definition is far from being canonical and is said to be quasi-

inverse to F.
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Example 1.10. In the category Vecty, of vector spaces and linear maps over a fixed field k, consider
the two full subcategories:

C = {k"}, the one-object subcategory with all maps k"™ — k" which are given by n x n-matrices
over k.

D = Vect}, the category of all n—dimensional vector spaces over k and linear maps between
them.

There is a natural inclusion functor ¢ : ¢ — D which is an equivalence of categories. To
construct a quasi-inverse, G : Vecty — {k"} we have to choose a basis in each V € Ob(Vecty)
which gives an identification V' = k™ and for f : V' — W, the morphism G (f) is the matrix of f

in the chosen basis.
The following theorem due to Freud gives a very useful characterization of categories.

Theorem 1.2. A functor F': C — D is an equivalence of categories if and only if F is fully faithful

and essentially surjective.
The proof is based on the following lemma:

Lemma 1.3. Let C be a category. Then there is a full subcategory Co such that the inclusion functor
1:Co —> C is an equivalence of categories and has the property that any two isomorphic objects in

Co are equal.
Definition 1.16. Such a category is called the skeleton of C and is denoted sk (C).

The category Cy is defined by choosing exactly one object in each isomorphism class of objects
in C.

For example, {k"} = sk (Vect}) or more generally, {0,k,k?,... k",... } = sk (Vecty).

Fundamental groupoids.  Recall that a groupoid is a (small) category in which every morphism
is an isomorphism. In particular, a groupoid with one object is a group, that is, if G is a groupoid
with one object %, then G = Homg (%, %) is a group.

For a topological space X, we define its fundamental groupoid II(X) by Ob(II (X)) = X
and for z,y € Ob(II(X)), Hompyx) (7,y) is the set of homotopy equivalent paths from z to y.
For z € Ob(I1 (X)), End (z) = II; (X, z), is the usual fundamental group of X based at x and
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Iy (IT (X)) is the set of connected components of X. For a general category C, we define the set of

components of C, denoted Iy (C) by
IIp (C) = 0b(C) / ~

where ~ is the smallest equivalence relation generated by elementary relations: z ~ y if and only if

there exists « i) yin C.

1.6 Representable Functors and Yoneda Lemma

Recall if X is a topological space, we define Op (X) the category of open sets in X and presheaves
on X as functors Op (X)” — Set. We want to extend this definition to general categories.

Fix a (locally small) category C, define ¢ = Fun (C°P,Set). By analogy with topology, we call
FeOb (é) a presheaf on C.

Remark 1.6. If C = {x} is the “pointed” category, then C = Set. (Another point of view) If C is a
small category, this suggests to think (and call) F' € Ob (é) C-sets. In fact, the category C of C-sets

shows many good properties with Set. (In fact, it is a topos.)

Given X € Ob(C), we can define

hx : C? — Set
Y +— C(Y,X):=Home (Y, X)
ffr C(Z,X) — C(Y,X)

f

(YLZ) - (Z$X> — (Y—>21>X)

where f* is the precomposition with f.

Definition 1.17. A functor (a presheaf) F': C? — Set is representable if there exists X € Ob (C)
together with isomorphism of functors ¥ : hy = F in C. The assignment X — hx extends to a

(covariant) functor
h: ¢ — C

Xb—>hX

which is called the Yoneda functor and defined (on morphisms) as follows.
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For f: X1 — Xy, define hy : hx, — hx, by

e hf(Y): th(Y):C<Y,X1) — hX2(Y):C(Y,X2)
! (Y&Xl) — (Yi>X1i>X2)

We need to check that hy is a morphism of contravariant functors. The following diagram

hy(Y)
hx, (Y) == hx, (Y)

J’ hy(Z) i

hx, (2) —=hx, (2)

(YiX1)+—>(Yi>Xli>X2)

| I

(Z$Y$X1>|—>(Z$Y1>X11>Xg>

commutes for any s : Z — Y because associativity of composition of morphisms, f o (gos) =

(fog)os.
It is easy to check that hyoy = hy o hy because this is equivalent to (f o g), = f« o g«. Thus we

have a natural functor

h: c — C
Xl—>hX

<X1 ER X2> — hp={hs(Y):hx, (Y) = hx, (Y)}YeOb(C)

Theorem 1.3. (Yoneda Lemma) For any X € Ob(C) and F € Ob ((f) the map

(S Homs (hx, F) — FX

p={ey :hx (Y) = FY}yeopey — ¢x (Idx)

s a bijection of sets.
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Proof. We need to construct the inverse map, given by

o: FX — Homg (hx, F)
o (x)y : hx (Y) - FY

v e (YLX) s Ff(z)

Y €0b(C)

There are three things to be checked.

1. For every x € FX, ¢(x) is a morphism of functors. This can be shown via the following

commutative diagram

hx (Y)‘b&\ FY

T,
dx(2)

hx (2) 225 F7

(YLX): Ff(z)
1 I

forany g: Z — Y.

2. ZDO(ﬁ:IdFX
Yoo (z)=¢(z)x (dx) =ldx (z) = z.

3. ot =Tds, p.

¢(px (dx))y: hx(Y) — FY

901 () = 6 (px (1dx)) = ;
(v 5 x) = Ffex(dx)

By the commuting diagram

hy (X) 2> FX

hy (V) 25 FY
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(X ldx X)} ox (Idx) = ox (Idx)

we see that ¢ o) () = p.
O

Corollary 1.1. (Yoneda Lemma 1I) The functor h : C — C is fully faithful. Thus C can be
identified with the full subcategory of(? consisting of representable functors. (That is, C is a very

natural enlargement of C. )

Proof. We need to show that i : Home (X,Y’) — Homg (hx, hy) is a bijection. Take ' = hy in the

previous theorem,

Hom (hx,hy) — Home (X,Y)
© — @X(Idx)

is the inverse of h for any Y € Ob (C). O

The presheaves on C that lie in the essential image of hare the representable functors. The

functor h is called the Yoneda embedding.

Remark 1.7. Yoneda lemma implies

1. If F: C°? — Set is representable by X € Ob(C), i.e. there exists ¢ : hx = F, then X is
determined up to a canonical isomorphism. Indeed, suppose X and X’ € Ob(C) represent F,
then there exists ¢ : hy = F and ¢/ : hys = F, then (/) " ot : hx = hys. Apply h™! to

(@) "' o) we get hL (w')—1 o w) XD X

2. We can “rigidify” representability in the following manner. If I is representable with 1 : hyx =
F for some X € Ob(C), say that F' is represented by the pair (X, o) where o == ¢¥x (Idx) €
FX. We call o a universal object. Then (X, o) is determined by F uniquely up to unique
isomorphism, i.e. if there exists (X, o) and (X', 0’) representing F, then there exists a unique

f:X = X’ such that Ff (o) =0’
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3. We can dualize everything and consider the category Fun (C,Set) and introduce for any

X € Ob(C) a covariant functor
X :C — Set,Y — C(X,Y)

and we say that F' : C — Set is corepresentable if there exists X € Ob(C) such that F ~ h¥

in Fun (C, Set). There is an obvious dual of Yoneda Lemma.
h® : C°’ — Fun (C, Set)
is a fully faithful contravariant functor.

Examples

D-modules (PDEs).

Example. Let X C C™ be an open subset, n > 1. O = O (X) is the commutative ring of analytic
functions defined on X. D = D (X) is the non-commutative ring (and in fact an algebra) of linear
differential operators with coefficients in O. A linear differential operator P on X is just an element

in D in the form

N a 7;1 8 i’n,
Z @iy aq, (T1, - Tn) 5) e

1, 7in

P(z,0) =

where % are the linear differential operators

0_ . 0o — O

f(xla""xn) — %(:Ula"'axn)

A linear differential equation can be regarded as a kernel of such an operator P (z,0)u = 0. D is
the ring of analytic differential operators generated as a subring of Endc (O) by P (z,0). Consider

the solution functor

Solp: D-Mod — Set
M +—— Solp(M)={ue M:P(xz,0)u=0}

31



1.6 Representable Functors and Yoneda Lemma 1 CATEGORIES AND FUNCTORS

This functor is corepresentable by the left D-module Mp = D/D - P,

SOlp (M) ~ HomD—Mod (Mp, M)

and P ~ P’ if and only if Mp = Mpr.

Representation Schemes. The fundamental problem in representation theory is to understand
the structure of finite dimensional representations of a given (associative or Lie) algebra A defined
over a field k. For instance, let I' be a finite group and k = k, char (k) = 0, then any n-dimensional
linear representation of I' is given by k[I'] — M, (k). More precisely, fix n € N, the set of all

representations of a given algebra A consists of k-algebra maps

p:A—M, (k).

The natural approach is to define the representation functor

Rep, (A): CommAlg, — Set
B +—— Homayg, (A, M, (B))

where Homayg, (4, M, (B)) is the set of families of representations of A parametrized by Spec (B).

Note Rep,, (A) (k) is the set of all k-linear n-dimensional representations of A.

Proposition 1.1. The functor Rep,, (A) is corepresentable,that is, there exists a commutative alge-

bra A,, such that

HomcommAlg, (An, B) = Rep,, (A) (B) = Homaig, (A,M, (B)),

with universal object the universal representation

o:A—M,(4,).

Problem. What is A,,7
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Ay =C/([C,C), C=[AxM, K)]"™"® .

where

C = [AxM, (&)]"® = {we AxM, (k),[w,m] =0,Ym € M, (k)}.

There is an embedding

M, (k) < [A*M, (k)M*)

m — m

Recall from Algebraic Geometry that there is a natural functor

Spec: CommAlg;” — Schemes;,

A — Spec(A)

that is fully faithful and whose essential image is the full subcategory of affine schemes. For example,
Spec (kla1,...,an]) = A%, In particular, CommAlg;” = AffineSchemesy, or more conveniently,

CommAlg; = AffineSchemes;” and s

Rep, (4) : AffineSchemes;” — Set

Spec(B) +— Homag, (4, M, (B)).

Corollary 1.2. The functor Rep, (A) is representable by the affine scheme Spec (Ay) which will be
denoted Rep,, (A).

Exercise 1.5. Let k be a field and A = k[z,y]. Fix n > 1. Then A,, can be described explicitly as

follows:

1. Consider the polynomial ring of 2n? variables k [z;;, yi] . Define the ideal generated

i,j=1,2,..n

by n? relations

n
I= <Z (TikYrj — yz’kxkj)> .
k=1 ivj71727"'7n

Prove that An >k [l‘ij, yij] /I
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2. Note that it is convenient to organize the variables x;; and y;; as matrices

X = ||xij||i,j:1,2,...,n and Y = ”yi]'H@j:l,Q,...,n

and notice that the relation XY = Y X = 0 defines the ideal I. Take B = A,,, then to the iden-
tity element Id4, € Homcommalg, (An, Ay), there corresponds the universal n-dimensional

representation of A

p" i A— M, (4,).

Show that the universal representation in this case is given by

pun: k[x,y] — Mn(An)
r — X

y — Y.

Remark 1.8. Rep,, (k[z,y]) = Spec (4,,) is called the n'* commuting scheme. For n > 5, and k an
algebraically closed field of characteristic 0, it is an open conjecture that Rep,, (k [z, y]) is a reduced
scheme, namely, that the ideal I is radical. It is a well know result of Gerstenhaber (1961) that

Rep,, (k [z,y]) is irreducible.

Hilbert Schemes. Fix an algebraically closed field k of characteristic 0 and let X be a fixed

projective variety over k (for instance, one can take X =P}, n > 1).

Problem. Classify all closed subschemes of X. That is, construct a “space” whose points are in
bijection with Hilbx (Spec (k)), the set of all closed subschemes in X.

We extend Hilbx to a functor

Hilbx : Schemes” — Set

U +— {closed subschemes Z C U x X such that ny|z : Z — U x X — U is flat} .
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On morphisms, say f: U — U, then

4L——>7

L

UxX —>U xX
fXIdX

where Z = (f x Idx)* Z " is the pullback of the diagram in the category of schemes.

Theorem 1.4. (Grothendieck) The functor Hilbx is representable and the corresponding scheme is

called the Hilbert scheme of X.

Remark 1.9. Note that Hilbx is not a variety but there is a natural stratification of Hilbx by
honest projective (Noetherian) schemes. The strata Hilb§ are indexed by Hilbert polynomials P
which are defined as follows: For a scheme U , fix © € U and consider the scheme theoretic fiber
Z, of my. Define for each integer m the polynomial Pz, (m) = x (Oz, ® Ox (m)) where x is the
Euler characteristic. There is a polynomial Py € Z [m] such that Pz (m) = Pz, (m) for all m large
enough. Furthermore, Pz is independent of U and w if U is connected. Using this, we can define
the subfunctor

U — Hilb% (U) = {Z e Hilby (U) : P; = P}

for a given P € Z[m].

Theorem 1.5. For any P € Z[m), the subfunctor Hilby (U) is representable by a projective Noethe-

rian scheme over k.

Remark 1.10. In general, in order to solve a moduli problem in algebraic geometry, we first construct
a functor which is expected to be representable by the moduli space we are looking for. Second,
prove (using general categorical facts) that such a functor is indeed representable. The idea is to
first consider general presheaves and then restrict to the subcategory of representable presheaves.
In particular, we need a “practical” criteria for representability of functors. We will restrict to
Algebraic Geometry.

Let C = Schemes; be the category of schemes over some commutative ring k. The Yoneda
embedding

h : Schemes;, — Fun (Schemes;”, Set)
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is fully faithful and we can refine it using

CommAlg, — AffineSchemes]” < Schemes;”

Spec

by restricting the Yoneda functor to commutative algebras to obtain
h : Schemes;, — Fun (Schemes;”, Set) — Fun (CommAlg;,, Set).

Lemma 1.4. (Refined Yoneda Lemma) The functor h : Schemes; — Fun (CommAlg, Set) is

fully faithful. The corresponding essential image consists of scheme-functors.

For a proof of this theorem, see Chapter 4, proposition 4-2 in [EH|. Note that the representable

functors among these scheme functors are precisely affine schemes.
Problem. Characterize scheme functors among all functors from CommAlg,, to Set.

Definition 1.18. A functor F' : CommAlg; — Set is called a sheaf in the Zariski topology
if for any A € CommAlg;, and any open covering of Spec (A) by distinguished open affine sets

U; = Spec (Ay,) where Ay, is the localization of A at some f; € A, the following sheaf axiom holds:
[SA] For any choice of oy € F'Ay, such that

Ay,

Afi
Pag, (@) =pa), (a))

%

.o . . Ay,
for all 7, j, then there exists a unique a € F'A such that pﬁf{ (o) = a;, where pA?f‘ cFAy —
[ )

FAfifj'
Theorem 1.6. A functor F': CommAlg; — Set is a scheme functor if and only if
1. F is a sheaf in the Zariski topology.

2. There exists a k-algebra A; and «; € FA; such that
a;:hti = F

satisfies the property: for all fields K O k, the image of h™ (K) under d; covers FIK.
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Generalized Manifolds.

Let Man be the category of finite dimensional C*°-smooth manifolds.

Definition 1.19. A generalized manifold is a functor (presheaf) F' : Man® — Set which satisfies
the sheaf axiom, i.e. for any M € Ob(Man), for any open cover {U;},.; of M, M = U U;, if

for any «; € FU; we have pg; (i) = pgfj (o), then there exists a unique o« € FM such that
it (@) = ai.

By Yoneda lemma,

Man <— GenMan C 1\//151

M —  hy=Map(—,M): N + Map(N,M)
Question. What are generalized manifolds that are not honest manifolds?

For M € Ob(Man), p > 1, consider QP (M) the space of differential forms of degree p.

94 (M) = w= Z fz11p ((IZ) dwil VAR da:ip

i1 < <

The map
M — QP (M)

(f:M—>N) — (ff:QP(N)— QP (M))

is functorial in M. This makes QP : Man® — Set a contravariant functor.

Theorem 1.7. For p > 1, QP is a generalized manifold.
Point. We can extend differential calculus to generalized manifolds.

Definition 1.20. Given a generalized manifold F' : Man® — Set, the set of differential forms on
F of degree p is
QF (F) == Homgr— (F, Q)

For example, given a generalized manifold F' : Man” — Set, we can define QP (F') in such way
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QP (hpr) = QP (M). Recall Yoneda lemma tells us that

HOIHI\//I;1 (h]w,F) = M.

In particular, take F' = QP, Homgr— (hay, Q) = QP (M) ,VM € Man.

Recall that differential forms on M define de Rham complex

Q* (M) = 2" (M) S Q1 (M) =+ D o (M) - -

where d is the de Rham differential. This operator id functorial.

M - Q*(M)
(f:M—N) — (f*:Q°(N)—Q*(M))

The de Rham cohomology is defined as Hj,p (M) == H* (Q* (M) ,d).
This extends to a definition of de Rham complex (Q° (F),d), and H},p (F) = H* (Q°* (F'),d).
Take F' = Q' : Man? — Set , complete the de Rham complex, (2P (Ql) = Homg— (Ql, Qp) is

the space of all natural constructions of a p-form on a manifold from 1-form.

Theorem 1.8. The de Rham complex of Q' is isomorphic to the following complez,
Q* (Qh) = [R—>R—>R—>R—>---]
and
Hpp (Ql) =
1.7 Adjoint Functors
Let F: C — D be a functor. Fix Y € Ob (D) and define
Fy: C? — Set

T + Homp (FT,Y)
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or equivalently, ﬁy =hyoF.

Theorem 1.9. Assume that Fy is representable for each Y € Ob(D), with a representable X =
Xy € 0b(C), Fvy > hyx. Then the assignments Y — Xy extends to a functor G : D — C such that

there is an isomorphism of bifunctors C°P x D — Set,

n: Homp(F(=),—) — Home(=,G(-))

This G is unique up to a unique isomorphism.

Remark 1.11. The theorem can be restated as follows, F' : C — D defines a functor

~ ~

F*: D — C
H — HoF

Furthermore, we can consider hp : D — D and F* o hp : D — D — C. On the other hand, given
G : D — C, we can consider hcoG:D—>C<—>CA.

This theorem is equivalent to say that there exists a unique G : D — C with isomorphism
F* o hp = he o G. Here uniqueness means that if there are two functors G1,Gy : D — C with

@i F*ohp = heoGy,i = 1,2, then there exists a unique f : G1 = G5 such that oo = (he o f) 1.

Proof. (See details in lecture notes [HA])

For Y € Ob (D), denote the isomorphism by 1 : hx = Fy,ie.

Y = {¢r : Hom¢ (T, Xy) — Homp (FT, Y)}TeOb(c)

Take T' = Xy, define
OXy = I/JXY (Idxy) : FXY —Y.
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Now we define G : D — C by

e Objects: G: Y — Xy.

e Morphisms: Given f:Y — 17, consider the bijection of sets

: Home (-, X;) — Homp (F(-),Y)

I I
hx. Py

Y

and

foogy :FXy Y =Y,
define

G (f) =gy (fooay): Xy — Xy

It is straightforward to show that G : D — C is a functor and satisfies the condition of the theorem.

O

Definition 1.21. The functor G : D — C given by the theorem is called right adjoint functor of
F, we write

F:C=D:G
or

¢ o

D

The adjoint pair (F,G) comes together with isomorphisms

nx.y : Homp (FX,Y) = Home (X,GY), VX € O0b(C),Y € Ob(D) (6)
which are natural in X,Y.

Adjunction Morphisms
Let (F,G,n) be an adjoint pair of functors, then
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1. Take Y = FX in[6]and apply to Idpx, we get
ox =nx,rx (Idrx) : X - GFX, (7)
which gives a morphism of functors
o:1de - GF

called the unit of adjunction.

2. Take X = GY inl6land apply to Idgy, we get
ey = Ngyy (day) : FGY =Y, (8)
which gives a morphism of functors
e: FG — Idp

called the counit of adjunction.

We will write (F,G,0,¢).

Using convolution of functors and morphisms of functors, define Foo : F — FGF,{ox : X — GFX}XEQb(C)
gives {(Foo)x : FX = FGFX} v o) and Goe : GFG — G, {ey : FGY = Y}y oy p) gives
{(Goe)y : GFGY — GY}YEob(D).
Similarly, we can define c oG : G — GFG and eo F : FGF — F.

Observation. n can be recovered from ¢ and ¢ as follows.

By functoriality of nx — : Homp (FX, —) — Home (X, G (—)), for any ¢ : FX — Y, the following

diagram commutes.

NX,FX

Homp (FX, FX) —— Hom¢ (X,GFX)

@*i l(GQD)*

Homp (FX,Y) —="+ Home (X, GY)
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f nx,rx (f)

I |

pofr—=nxy(pof)=Goonxrx (f)

Apply to f = Idpx, we have

nxy (p) = Gponxrpx (Idpx) = Gpoox. (9)

Dually for any ¥ : X — GY we have

Nxy () = ey o F (). (10)

Thus giving (F,G,n) is equivalent to giving (F, G, 0,¢).
Lemma 1.5. For any adjoint pair (F,G) the following identities hold.

Foo eoF

ldp = (0 F)(Foo): F 2% FGF &5 F (11)
I = (Goe)(00G): G 2% aFG 9% ¢ (12)
Proof. Straightforward. O

Proposition 1.2. Let F:C — D and G : D — C be two functors, Then F': C =D : G if and only
if there exists o : Ide — GF and ¢ : FG — Idp satisfying [11] and [19

Proof. “ =" Assume F : C = D : G are adjoint with n as in[6] Define o and ¢ as described in the

equations [7] and [§] Using the relations [9] and [I0] for any ¢ : FX — Y,
= 77)_(713/ (nxy () = n;(}y (Gpoox)=cyoF(Gpoox)=cyoFGpoFox

Take Y = FX, ¢ = Ildpx, then Idpx = epx o FG (Idpx) o Fox = epx o Fox, which is the same
as the equality [I[I} Similarly we have the equality

“ <=7 Agsume F :C — D and G : D — C are two functors and there exists ¢ : Id¢ — GF and
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¢ : FG — ldp satisfying the equalities |11] and Define for any X € Ob(C) and Y € Ob (D),

nxy : HomD (FX, Y) — HOmc (X, GY)

© — Gpoox

and
Ny : Home (X,GY) — Homp (FX,Y)

(0 —> gy o F)
We will prove that ' =7~
Consider the diagram
Fx % parx £ pay
W e
FX — Y

Note (I) commutes by the equality [11]and (IT) commutes by the fact that ¢ is a morphism of functors.

So we have
p=poldpx =cy o FGpoFox =ey o F (Gpoox)=1nxy onx,y (¢).
Son'x ynx,y = 1d. Similarly, nx y 7’y = Id. Therefore iy = Nxy,¥X € 0b(C),Y € Ob(D). O

Examples/ Applications

Corollary 1.3. If F : C — D is an equivalence of categories with a quasi-inverse G : D — C, then
G is both right and left adjoint of F.
F:C=D:G

G:D=C:F

Proof. F:C — D is an equivalence of categories with a quasi-inverse GG : D — C if and only if there
exists two natural isomorphisms o : GF = Ide and 8 : FG = Idp.
Take 0 = ' :Ide — GF and € = 8 : FG — Idp, satisfying[11]]and[12) so F: C =D : G.
Take 0 = 871 :Idp — FG and ¢ = o : GF — Ide, satisfyingand soG:D=C:F. O

Corollary 1.4. Let F : C = D : G be adjoint functors. For any category A, there are adjunctions
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of the restriction functors

G*:Fun(C,A) = Fun (D, A) : F*
given by (CgA) — (DgC—R>.A) = G*(R) and F* (L) := (CgDiA) i (D£>A).
Proof. Let o : Ide — GF and € : FG — Idp be the adjunction morphisms for the adjoint pair
(F,G). Given (C 5 A> € Ob(Fun (C, A)), consider Ro : R — RGF and vary R in Fun (C, A) to

obtain
o*: IdFun(C,.A) — F*G* (: (GF)*) and e G'F* — IdFun(D,A)~
Since ¢ and ¢ satisfy [11] and so do o* and £*. In particular, (G*, F*) is an adjoint pair. O

Theorem 1.10. (Freyd) A functor F : C — D is an equivalence of categories if and only if F' is

fully faithful and essentially surjective.

Proof. 1t is clear by definition that an equivalence of categories is fully faithful and essentially

surjective. Conversely, for any Y € Ob (D), consider the functor
Homp (F (—),Y) : C? — Set.

Since F' is essentially surjective, there exists X € Ob (C) together with isomorphism FX =Y so
that
Homyp (F (-),Y) = Homp (F (—), FX) — Hom¢ (—, X) = hy.

In particular, Homp (F' (—),Y) is representable for all Y € Ob (D) and hence has a right adjoint
G : D — C together with morphisms o : Id¢ — GF and ¢ : FG — Idp. We now show that ¢ and ¢
are isomorphisms.

Fix X' € Ob(C) and for all X € Ob(C), apply the functor Home (X/,—> to the morphism
ox : X - GFX to get Hom¢ (X’,X) — Homge (X’, GFX). Notice that the resulting morphism

factors as

hx <X) — Home (X’,X) Home (X’, GFX) — harx (X)

r Mx' rx

[~=3 o)

Home (FX’, FX)
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s0 is a bijection of sets for every X, X € Ob (C) and hence ox induces an isomorphism of functors
hx = hgrx represented by X and GFX. The Yoneda lemma then implies X =2 GFX. Dually,
start with ey : FGY — Y for every Y € Ob (D) and apply the functor Homp (F X, —) to ey to
obtain

¢ : Homp (FX, FGY) — Homp (FX,Y)

for all X € Ob(C) and Y € Ob (D). Composing ¢ with the isomorphism resulting from F being

fully faithful, we obtain the commuting diagram

Home (X, GY) Homp (FX,Y)

Homp (FX, FGY)

and ¢ is an isomorphism. By essential surjectivity of F, for all Y’ € Ob (D), there exists X € Ob (C)

so that Y’ = FX. In particular, the isomorphism ¢ induces an isomorphism representable functors
hrcy (Y) — Homp (Y’, FGY) % Homp (Y’, Y) — hy (Y) .

The Yoneda lemma then implies that FGY =2 Y. 0l

Corollary 1.5. Let (F,G,0,¢) be an adjunction. Then
1. G is fully faithful if and only if € : GF — Idp 1s an isomorphism.
2. Fis fully faithful if and only if o : Ide — FG is an isomorphism.
3. Both F and G fully faithful if and only if F is an equivalence of categories if and only if G is

an equivalence of categories.

Lemma 1.6. Let F:C=D:G and L : D = &£ : R be adjunctions. Then LF :C =& : GR is an

adjunction.

Proof. Forevery X € Ob(C)andY € Ob (&), Homg (LFX,Y) = Homp (FX, RY) = Hom¢ (X, GRY).
O
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Traces in Categories. Given a triple (E, F, G) of adjoint functors

()

and a morphism of functors v : G = E, we have a natural trace map for all X, Y € Ob (C)
tr : Homp (FX, FY) — Home (X,Y)

defined for any ¢ : FX — FY as the following composition:

X %5 GFX S prx P9 pry 2%y

Taking X =Y, define
tr (F) = {tr (F')x : Endp (FX) — Endc (X)}Xeob(C) :

The map tr(F) is a morphism of functors tr(F) : End (F) = End(Id¢) where End (F) :=
Homgync.py (F, F') and End (Id¢), defined similarly, is the center of the category C. This trace
map is called the Bernstein trace map.

We compute this trace map more explicitly for C = D = Vecty, the category of vector spaces

over the field k. Fix a finite dimensional vector space V € Vect; and consider

Fy =—®,V: Vecty, — Vect;
w — W RV

The functor Fy has a right adjoint:

1) (2)
Homy, (Fy W, M) = Homy (W ®;, V, M) = Homy, (W, Homy, (V, M)) = Homy (W, M & V")
where we use the notation Homj, to mean Homvect,. The canonical isomorphism (1) is the usual
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tensor-hom adjunction which is given explicitly by

wWerV & M W —  Homy (V, M)
—

wv = p(w,v) w = (v (w,v))
The isomorphism (2) follows from the isomorphism M ®; V* = Homy (V, M) given explicitly by
m®v* — (¢ :v—v*(v)m). Define G := — ®;, V*, then G is right adjoint to Fy,. Moreover, it is
also a left adjoint because V' = V** and applying the above construction to V* gives the desired

left adjoint

Vect,,
—QrV* —QrV —QrV*.
Vect,,
For V € Vect;, define natural maps
v ko — Endk(V) p: Ver Vs — k p: VeprVvVse — Endk(V)
1 — Idy vRw*  — w*(v) vw* — (z— w"(z)v)

If V is finite dimensional, then s is an isomorphism and we denote its inverse by v = u~!. We can
compute the adjunction maps precisely:

The unit o : Idvect, — GF' is defined for all M € Vect,, as

IR

e M —— M ®Endy, (V) —= M & (V ®;, V*)

(M @ V)@, V*

mi (Idyy @ v) (m@1dy) = (Idy @ (vor)) (m)

The counit € : EF — Idvect, is defined for every M € Vecty, by

e (M &y V)@, Vi —= M ®, (Ve V*) M

(m®v)®w*t w* (v)m
which is precisely epr = Idp ® p. The trace map is given by tr (Fy) : End (— ®x V') — End (Idvect, )
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with

tr (Fv),, : End (M ®; V) — Endy (M)
for every M € Vecty. In particular, every ¢ : M ®, V — M ® V is mapped to the composition

Idy ®v PRIdy * 1d s ®p

1@ A reBndy (V) 229% Men(V @ V) L2 Me VeV 22 ek = M

tra (Fy) (p) : M ——

which can be described explicitly by a choice of dual bases for V and V*. Suppose V is n-dimensional
and let {v;}"_ and { v’ }::1 be dual bases, that is, < v, v; >= ;. Any ¢ : M @ V — M @ V

can be written with respect to this basis as
m® v; — ¢ (m e ;) Z‘Pw m) ® v;

where Hapin?j:l € M, (End (M)). This allows us to describe the map v : Endg (V) = V @, V*

explicitly as
n
= o (v) @}
i=1

For m € M,

tr (Fy ), (@) : mi—m® ldy —— Z;‘:l m Qv Qv ——= szzl pij (M) ® v; @ VF > szzl ©ij (m) 0ij .

tr (Fv) s ( E ¢jj (m) € Endy, (M)

and is known as relative trace. In the special case when M = k, Endy, (k) = k and

tr (Fv), : Endg (V) — k

@ — Y1 P

which is the usual trace of matrices.
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Representation Theory.

Let g be a finite dimensional complex semisimple Lie algebra. A practical example to keep in mind
is g = sl, (C).

Let g—Mod be the category of representations of g. We can identify g—Mod with the category
of left modules over an associative algebra Uy, the universal enveloping algebra. One way to define
the universal enveloping algebra is via the motto:

Left-adjoint functors to forgetful functors solve universal problems.

In this example, there is a forgetful functor

LieAlg;, «— Alg, : F

from the category of algebras over k to the category of Lie algebras over k that induces on an algebra

A the obvious Lie algebra structure. This functor has a left adjoint, the universal enveloping functor,

U : LieAlg, — Alg,

that maps any Lie algebra a to its universal enveloping algebra U,.

Exercise. Show that for any Lie algebra a, its universal enveloping algebra U, has the following
form

Us=Ta/(z@y—y®z—[z,y],: 2,y € a)
where T'a is the tensor algebra of a.

For a Lie algebra g, there is an isomorphism of categories g—Mod = U;—Mod resulting from

the (U, F') adjunction which gives the isomorphism

Hompiealg, (9, F (End (V))) = Homayg, (Ug, End (V)).

Take a finite dimensional representation of g, say V, and consider

Fy=—®;V: g—Mod — g—Mod
%4 — WV
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where W ®j, V' is again a g representation via the formula & (w ® v) = fw ® v + w ® {v. Consider
the trace map

tr (F\/) : End (Fv) — End (Idg7M0d> .

The target of this trace map is well understood, in particular,
End (Idg—mod) = End (Idy,—Mod) =: Z (Us—Mod).

In fact, we proved in Theorem 1.31 that there is a natural isomorphism Z (U;—Mod) = Z (Uy) C U,.

Theorem 1.11. (Chevalley) For any semisimple complex Lie algebra g,
Uy = Sym (h)" = C[n"]",

where by is the Cartan subalgebra of g and W is the Weyl group.
Proof. The Lie algebra g has a decomposition g =n" 4+ b +n~ so that Uy = Uy @ (nUy ® Ugn™).

Hence the map ¢ : Uy — Uy = Sym (b) restricts to an isomorphism

Yz 1 Z (g) — Sym (h)"

called the Chevalley isomorphism. O

Note that End (Idg) = Z (U,) =C 151" so there is a natural map

End (Idg) —> End (Fy) "% End (1d,)

(
|

" iy )er Clh"

with i given by Z (Ug) 2 z = [(¢ : Fy — Fv) = (2.9 : Fy — Fy)].
It would be interesting to also be able to describe explicitly the domain End (Fy) of the trace

map.
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The representation functor.

Fix n > 1, consider the (n x n)-matrix functor

B M, (B)

where k is a field, Alg,, is the category of associative unital k-algebra, and M, (B) is the algebra

of (n x n)-matrices with entries in B.

Theorem 1.12. This functor has left adjoint

A — VA

the n-th noncommutative representation functor.

Corollary 1.6. The classical representation scheme for a fired associative algebra A

Rep, (A): CommAlg, — Set
B — HomAlgk (A,Mn (B))

is represented by the commutative algebra A, = (’C/Z) \ = {L/E/ < VA, VA >.

Proof. Note the inclusion functor i : CommAlg; — Alg; has left adjoint

(—)up: Alg, — CommAlg,
A — A/<[AA]>

the abelianization of A. Indeed, Homayg, (A, M, (B)) = HomcommaAlg, (A, B). Theorem says

that
Hom CommaAlg, ((\/Z) N B) — Homalg, ({ﬂ, i (B)) — HomCommalg, (4, M, (B))

O
Proof. We will use the fact that compositions of adjoint functors are adjoint (on the same side).
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Let’s compose M, as follows, define the category of algebras over M, (k)
Algyg, (1) = M, (k) | Alg;,

with

o Ob (AlgMn(k)> = {homomorphism of algebras M, (k) ERN A}

e Mor (AlgMn(k)) = < commutatitve triangles M, (k) R A

RN,

\ B

Note that for B € CommAlg,,, M,, (B) comes with canonical map M, (k) — M, (B) by applying

M, to k — B. Hence we have the following commuting diagram

M (k)@ —

Algy, Algyg, ()

Mo n(k)l_lk/( )U

M, (k) Uk B is the free product (coproduct) of M, (k) with B. M, (k) Ux B = colim [M, (k) + k — B
is the pushout (see later).
The forgetful functor U : Algyy, () — Algy, has left adjoint M, (k) Ux—. We only need to show

that M, (k) ®x — : Alg;, — Algy, () has left adjoint, which follows from next lemma. O
Exercise 1.6.

1. Any nonzero algebra homomorphism M, (k) — A is injective. This follows from the fact that
M, (k) is a simple ring.
n
2. Right ideals in M, (k) are is one-to-one correspondence to the Grassmannians HGT‘ (p,n).
p=0
Proof. The two statements are results of Morita equivalence between k and M, (k).
The ideals in M, (k) are in 1-1 correspondence to the ideals in k. Since k is a field, M, (k) has

no nontrivial ideal.
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The right ideals are in 1-1 correspondence to the right ideals in k™ as a right k-module (vector
n
space), i.e the subspaces of k™, which are exactly the elements in the Grassmannians HGT‘ (p,n).

p=0
[l

Lemma 1.7. The matriz functor M, (k) ®j — : Algy, — Algy, ) has quasi-inverse given by

()" Algyy o Alg,
(f My (k) = A) +— A = {q € Al[a, f (m)] = 0,¥m € M, (k)}

Proof. We need to show two things

1. (M, (A)M®) =~ 4
Consider the elementary matrices e;; € M, (A) , M, (A) = Span {e;;}, so for any M € M, (A),
write M = > mjje;;. The map M, (k) — M, (A) is given by efj — ej; where efj is the
clementary matrix in M, (k). Hence (M, (4))"»®) = {M € (M, (A)M® | [, eij] = O}.
By direct computation, we can get that if M € (M, (A))M"(k) then M = al for some a € A.
So we have (M, (4))M»®) =~ 4.

>Mn(k)

2. M, (Mn k) L5 A o (Mn (k) L A)

M, (k)
The previous exercise shows that f is injective, so we can embed M, (k) into A, and (Mn (k) ER A)

{a € Alla,f(e)]=0,Vee M, (k)} =kf(e11)® - ®kf (enn). Hence
(40 0 55 ) ) = 0, (8) £ Cxr) M (8) £ () =M () £ 1) = £ (0 0

which is exactly M, (k) ENYY
O

This lemma implies that the centralizer functor (—)M"(k) is both left and right adjoint of M, (—).

Hence
VA = (M, (k) Up AM®) = {0y = my xay % xmg % a; € My, (k) Uy, Alm; € M, (k) ,a; € A, [w,m] = 0,Vm € M,

Question: What do the elements in VA look like?
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Trick. Consider the elementary matrix e;;,1 < 4,5 < n, M, (k) = Span {eij}?,jzl' Recall the
relation satisfied by e;;’s,
D iy €ii =1
’ (13)

eijerl = 0jkeil

n
Take w € M, (k) Uy A any word and define its (i, j)-element by w;; = Ze’“ *w * ej;. Then
k=1

n n
[wij, em] = (Zeki * W * ejk> €lm — €lm (Zeki * W * ejk> =epxwxej —e;xwke; =0

k=1 k=1
V1 <1Il,m <n from [13]

{/A is generated by a;; where a € A C M, (k) U A.

k{aj; :a€ Aji,j=1,---,n)
VZ — 1] ) Oy I )
(matrix relation)

The centralization is given by

VA « M, (k)L A

Jwigll = w
Remark 1.12. The matrix algebra M, (k) can be replaced with “Azumaya k-algebras” (local matrix

algebras) in the key lemma. See notes in [K'T.

1.8 Colimits
Fix J a small category of which we think as “index” category.
Example 1.11.
1. Discrete category J = {e o o o e---} with Mor (J) = {Id;},cop7)-
2. Pushout category J = {a <= b — ¢} with 3 objects and two non-identity morphisms.

3. Sequential category J = {0 —>1—2—=3—---} with Od(J) = Z4 and Homy (i,j) =

0 i>y
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4. A poset viewed as a category J.

For a given category C, denote CY = Fun (7,C). We call a functor F': J — C a diagram of
shape J in C.

There is a constant functor A : C — C7 with

A C — cJ
A(X): J — C
X — i — X

(i =7 = (Idy:X = X)
( P )H A(f):A(X) = A(Y)
A(f)={A(f)i=T: X = Y}icong

Given any F' € Ob (Cj), define the functor

F: C — Set

X +— Homes (F,A (X))

Definition 1.22. If F is (co)representable with (co)representing object in C, this (co)representing

object is called colimit of F' (a.k.a. direct limit, inductive limit) and is denoted by colim s (F).

By definition, Hom¢ (colim 7 (F'), X) = Homes (F, A (X)).

Convenient pictures: If X € Ob(C), the natural transformation ¢ : FF = A (X) are given by

t=A{ti: I'(j) = X}jcops)- Visualize J as directed graph
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t can be visualized as cone

Fle — . oFf

F(i) o \ / o)) cone below F with vertex X

C = colimy (F') € Ob(C) comes together with s: F' = A (colim 7 F'). The universal property of

colimits says that V¢ : F' = A (X), there exists a unique f : colim (F') — X such that A (f)s=t.

F(j)e of'(K)
F(p) N Sk '
) S A N
Fli)g_ - — 2 >colimy (F)<#—-=—-—-—— of'()

!
!
Al
!
\
X

As a consequence of Theorem we have the following proposition.
Proposition 1.3. Suppose colimy (F') exists for every F € Ob (Cj), then the assignment F' +—
colimy (F) extends to a functor CY — C which is left adjoint to A.

colimy :C7 = C: A

Definition 1.23. C is called cocomplete if colim exists for all small J and all F € Ob (Cj).

Example 1.12. C = Set, Top, Mod (A) are cocomplete.

Let’s consider F' : J — Set. Define U = H F(j)={(,z):j€Ob(T),r € F(j)}, then

JEOL(T)
colimy (F) = U/ ~ where “~7 is given by (j,z) ~ (j',2') if there exists ¢ : j — j’ such that

F(p) (z) =2
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Basic Examples

Coproduct. Discrete category J = {e® e o---e o} with Mor (J) = {Idj}jeOb(j)'
A functor F : J — C is equivalent to F = {X; = F (j)}jGOb(j).

colimy (F) = H X is called the coproduct (sum) of objects X; in C.
JEOL(T)

A natural transformation s : F' = A (colimy (F)) is equivalent to < s; : X; — H X;

JEONT) ) jeon()
By convention, if J = (), there exists a unique F : J — C, colims (F) = () is the initial object

in C,i.e. VX € Ob(C) there exists a unique f: 0 — X.

Pushout. J={a+ b—c}
A functor F : J — C is given by the diagram {X, < X; — X} called the pushout data in C.
colimy (F') = colim {Xa & x5 Xc} = Xa]_‘[Xc = P € Ob(C) is called pushout of the
diagram.

P is characterized by the property that

Xp —— X,

is a Cocartesian (commutative) diagram in C, soy = sya, and Vt, : X. — Y.ty : X; — Y there

exists a unique f : P — Y such that t, = fsa,t, = fs,.

Coequalizer. J = { Oe ~ el }
(03
A functor F : J — C is given by the diagram { Xo X1 } where X; = F' (i),i =0, 1.
B

colimy (F) = coeq{ Xo X1 } =:C € 0b(C) is called a coequalizer of the diagram.
g
C is characterized by the properties

«
e there exists 7w : X1 — C such that mra = 75, Xg X, == C.

B
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«
o V Xy X1 —==Y , there exists a unique f : C — Y such that

B

commutes. We think of (C,7) as a “non-abelian” generalization of cokernel.

Warning. In general,

(0%
coeq{ Xo X1 } # colim {Xl & Xy g Xl}
B

even when Xy = Xj.

Exercise 1.7. Prove

e

o
coeq{ X X } — colim {X (aldx) X[[x (B,1dx) X}

whenever both sides make sense.

Proof. The second copy of X and the second map Idx in the colimit diagram ensures that ¢, =

tg. O

Sequential Colimits (telescopes). J=7Z,={0—-1—-2—-3—---}.

A functor F' : J — C is equivalent to {Xo Z—0> X, Z% X9 — }, called sequential directed
systems in C.

In the categories Set, Top, Mod (A), if all 4; : X; — X, are injective, the diagram is called
filtrations on colim 7 F'.

colimy F = | | X,,.
n>0
In the category Top, U C colim 7 (F') is open if and only if U N X, is open in X,,, Vn.

1.9 Limits

Note that ' : J — C can be written as F°P : J°P — C°P,
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Definition 1.24. The limit of F' is defined as lim 7 (F') := colim 7 (F'°P).
Let’s list basic properties of limits.

1. If lim y (F') exists, it represents the functor

F: Cc» — Set

X +— Homes (A(X),F)

or equivalently,

Homes (A (X)), F) = Home (X, lim 7 (F)).

There exists a unique natural transformation s : A (lim7F') = F with s = {s; : limsF — F (j)}jGOb(j)

such that for any ¢ : A (X) = F, pictured as

X
Fli)q L oF ()
W\ . P 7
F(j)® )

®r(k

there exists a unique f : X — lim 7 F such that sA (f) =t.

2. If lim 7 (F) exists for all F € Ob(C7) then A:C = C7 : limy is a pair of adjoint functors.

Examples
Products.  Discrete category J = {o o o-.-e o} with Mor (J) = {Idj}jeOb(J)'
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A functor F : J — C is equivalent to F = {X; = F (j)}jGOb(j).

limys (F) = H X is called the product of objects X; in C indexed by j € J.
JEOL(T)

A natural transformation s : A (lim s (F)) = F'is equivalent to { s; : H X; = X;

je0b(7) JEOB(T)
By convention, if J = (), there exists a unique F : J — C, lim 7 (F) = x is the terminal object

in C, i.e. VX € Ob(C) there exists a unique f: X — .

Pullbacks. J ={a—b+ ¢}
A functor F': J — C is given by the diagram {X, — X, « X }.
lim (F) = lim {Xa o x, & Xc} = X,[[X. € Ob(C) is called pullback of the diagram.
Xp

XGHXC is characterized by the property that
X

Xaq

Xp

is a Cartesian (commutative) diagram in C, ypo = ap,, and Vi, : Y — X, to : Y — X, there exists

a unique f:Y — Xal_[XC such that to = pa f,ty =, f.
Xp
Da is the base change of a along v, p, is the base change of v along a.

Equalizer. J = { Oe o1 }
(6%
X1 } where X; = F'(i),i=0,1.

A functor F': J — C is given by the diagram { Xo
B

6}

lim s (F) = eq{ Xo X1 } =: F € Ob(C) is called a equalizer of the diagram.
B

FE is characterized by the properties

«

e there exists i : ' — X such that ai = i, F s X X1
B
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o VY - XO X1 , there exists a unique f :Y — FE such that
N
j a
Y Xo X1
b 8

AN

AN /
E

commutes.

Exercise 1.8. (Dual version)

eq{ XX } - lim{X (ol0, x T x L&) X}
B

Exercise 1.9. (Origin of Quillen Algebraic K-Theory)
Consider the algebraic K-theory of finite fields Fy,q = p”. BU = BGL (C)"".

F — AP F induces Adams operation 7.

U4
BGL (F,) L hofibg ( BU — = BU ) ~ lim <BU W), Bu ] BU & BU)
Id

So H, (BGL (F,)) = H, (hofib (¢)), and
BGL (F,) — BGL (F,)"

1.10 Properties of (co)limits

Fix a small category J. Let C be a category that admits all colimits of diagrams of shape 7.
Let F: J — C,G : C — D be two functors.
The colimit of F' comes together with s : F' = A (colimy F') , s = {s; : F'(j) = colimgF}, 0, 75

which gives

Gs: GF = GA(colimy F),Gs = {G (sj) : GF (j) — G(coliij)}ieOb(J)

Assume in addition that colim 7 (GF') exists, by UMP of colimits, we have a unique ap : colim 7 (GF') —
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G (colim s F') such that

GF A (G (colimgs F))

\/

A (colimy (GF))

comimutes.

Definition 1.25. We say that G preserves (or commutes with) colimits of shape J if for every

FecOb (CJ )
1. colimy (GF) exists, and
2. ap is isomorphism.
Equivalently, using Yoneda Lemma, this can be restated as

Definition 1.26. G preserves (or commutes with) colimits of shape J if the functor

GF: D — Set
X +— Homps (GF,AX)

is (co)represented by G (colim 7 F') € Ob (D).
Dually, assume C admits all limits of shape J.

Definition 1.27. A functor G preserves (or commutes with) limits of shape J if the functor

GF: D® — Set
X +— Homps (AX,GF)

is represented by G (limsF) € Ob(D). Or equivalently, this can be restated as, for every F €

Ob (¢7)
1. limy (GF) exists, and

2. fr: G(limy F) — limy (GF) is an isomorphism.

62



1.10 Properties of (co)limits 1 CATEGORIES AND FUNCTORS

Definition 1.28. A functor F : C°? — D maps colimits to limits if the functor

GF: D* — Set
X + Homy o (AX,GF)

is represented by G (colimsF) € Ob(D), or equivalently, this can be restated as, for every F €
Ob (¢7)
1. lims (GF) exists, and
2. G(colimyF) — limy (GF) is an isomorphism.
Lemma 1.8. Assume C admits all limits and colimits of shape J. Then VX € Ob(C),
1. WX = Home (X, —) : C — Set preserves limits.
2. hx = Home (—, X) : C°P — Set maps colimits to limits.
FEquivalently,
1. Home (X, limgsF) = limy (Home (X, —) o F') = limy Home (X, F (—)).
2. Homg (colimzF, X) = limy (Home (F (=), X)).
Proof. Fix X € Ob(C).

1. Consider G = hX : C — Set, GF = hX o F : J — Set. Since Set is complete, S =
lims (GF) = limy (Home (X, F'(—))) € Set exists. By definition, it comes together with

s:AS=h*oF,s={s;:S— Homg (X,F(j))}jeOb(J)

Given s;’s is equivalent to given s : S — H Home (X, F (j)). This map is injective and

JEOb(T)
we can identify

N
I

(fj)jeOb(J) = H Home (X, F'(j)) Vo : i — 4, X commutes

JE0b(T) /
, F
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By UMP of limits, there exists a unique f : X — lim s F such that

commutes . This defines a map

(I S — Hom (X,limy F) = h¥X (limy F)

(fj)jeOb(j) — f

1 is the inverse of §: A~ (limy F) — S.

Exercise 1.10. Check that 1 is the inverse of 5.

Example 1.13. Let C = Vecty, kisafield. 7 =Z4 ={0— 1 — 2 — ---} the sequential diagram.
A functor F': J — Vecty, is given by {Vo ELN 1% EIN Vo — }

Let hﬂVi = colim 7 F', and @W = lims F. Then for any X € Vecty,
Homy (X, @V) = limHomy, (X, Vi),

Homy (hﬂV X) = limHomy, (V;, X).
Question. In general when does hX commutes with colim 7?

Exercise 1.11. Prove that in C = Vect;, Homy (X, hﬂVl) = @Homk (X,V;) if and only if

dimy X < oo.
Remark 1.13. See notes [DG] on DG categories, section on small (compact) objects.

Definition 1.29. Fix a small category J. In a category C we can define X € Ob (C) to be J-small

if a : Home (X, colim 7 F) = colimy (Home (X, F (—))) is an isomorphism for any F € Ob (C7).
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Question. Let A be a ring, C = Mod (A) be the category of left or right modules over A. What

are the small modules in C for J = Z.

Theorem 1.13. Let F : C 2 D : G be a pair of adjoint functors, then I preserves colimits and G

preserves limits (whenever they exists).

Proof. Consider H : J — C such that colim s (H) exists in C. Take any Y € Ob (D) and

1

Homyp (F (colimy (H)),Y) Homg (colimy (H) ,GY

)
)

12

limj Homc (H (*) ,GY

I

1

limy Homp (FH (—),Y)
Homyp (colim s (FH),Y)

Similarly, consider I : J — C such that lim s (H) exists in D. Take any Z € Ob(C)

Home (Z,G (limy (H))) = Homp (FZ,limy (H))

12

Iimj Homp (FZ, H (—))

12

lim 7 Home (Z, GH (—))
~ Home (Z, lim 7 (GH))

1.11  All “important” concepts are Kan Extensions

Problem. Given two functors F': C — D and G : C —€&, we want to extend F along G. Namely,

we want to find a functor H : £ — D so that the diagram

“commutes” up to isomorphism, that is F' =2 H o G. In general, such H does not exist for

several reasons.
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Obstructions: For X,Y € Ob(C), consider the Hom sets

Home (X, Y)—2% > Homp (FX, FY)
|
Homg (GX,GY)
with F' faithful and G not faithful. Then there might exist fi, fo : X — Y such that F'f| # F fo

in D but Gf; = Gfz in €. In this case such H will not exists. It may also happen that there

exist X, Y € Ob (C) such that Home (X,Y) = Homp (FX, FY) = () and Homg (GX, GY) # 0.

Example. Homotopic Functors.
Let F' : Top, — Ab be a functor from pointed topological spaces to abelian groups and let
G : Top, — Ho(Top.) be the localization functor. In general, an extension of F' along the

localization functor does not exist. If such H exists, F' is called homotopic.

Example. Induction and Coinduction.
Consider groups H < G and think of H and G as categories with one object {*}. Write G for
the category associated to the group G. The inclusion map H — G induces a functor i : H — G.

A representation (p, V) of H in vector spaces defines a functor

P H — Vecty,
* — %

(+%%) = pyeEndy(V).

Furthermore, we have the induction and coinduction functors G — Vect; which are defined from

classical representation theory as

Coind, (%) := Homy g (K [G], V).

In both cases, it is clear that Ind, o ¢ 2 p and Coind, o7 2 p.

Instead of insisting on having such an isomorphism, we look for universal morphisms in two ways,

either from F or to F. That is, we approximate F' by universal morphisms n : F = HG or
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e: HG = F.

Definition 1.30. A left Kan extension of F along G is a pair counsisting of a functor LgF : £ = D
together with a morphism 7 : F' = LgF o G satisfying the universal mapping property: For all
H:& —Dand~: F — HG, there exists a unique ¢ : LgF = H such that v = oG o n, where oG

is the horizontal composition
LoF

c—S. e Ve D
\[?[z

given by G = {pgx : LaF (GX) = H (GX)} xcop(c)- The UMP means that the pair (LgF,n) is

initial among all pairs (H : £ — D,~ : F = HQG).
Dually, we have a right Kan extension.

Definition 1.31. A right Kan eztension of F along G is a pair consisting of a functor RgF :
£ — D together with a morphism ¢ : RgF o G = F which is couniversal among all pairs
(H:£—D,6: HG = F). That is, for any such pair (H,¢), there exists a unique morphism
¢ : H= RgF such that € o oG = § where ¢G is the horizontal composition

RgF

c—S-eg % D
~—~=7
H

given by oG = {pgx : H (GX) = RaF (GX)} xcop(c)- One can encode this data in the following

non-commuting diagram
c—t-p

Gi V
RoF

g 136
H

Another way to define a Kan extension is as follows: Given functors F': C — D and G : C — &,

define
Hompyn(c,p) (F, — 0 G) : Fun (£,D) — Set

by H — Homgunc,p) (F, H o G) on objects. The Left Kan extension LgF € Ob(Fun (£,D)) is

precisely the object representing this functor since the UMP precisely gives the isomorphism

Hompun(c,p) (F, H o G) = Hompun(e p) (Lo F, H)
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for all H € Ob (Fun (€,D)).

Proposition 1.4. For a fired G :C — &, if LaF exists for all F : C — D, then there is an adjoint
pair

Lg(—):Fun(C,D) = Fun(€,D): G, :=(—)oG.
Dually, if RoF exists for all F, the right Kan extension can be realized as a right adjoint to G,.

Remark. Since L¢ is realized in the proposition as a left adjoint to G, it is an approximation of F'
from the left and is hence a left Kan extension. Furthermore, if both Lo F and RgF exist for all

F:C— D and afixed G : C — &, then we obtain the adjoint triple

Fun (£,D)
La(-) G Ra(—).
Fun (C,D)

Example. Group Representations.

Let G be a discrete group and k a field. Let Repy (G) be the category of k-linear represen-
tations of G and G-equivariant linear maps. Let G denote the category with one object {*} and
Homg (%,%) = G. Then Rep; (G) can be identified with the category Fun (G, Vecty). A rep-
resentation p : G — GL (V) of G induces the functor p mapping the object x to V and any
morphism g : * — * to pg : V. — V. Suppose H < G is a subgroup, there are classical func-
tors relating Repy, (H) and Repy, (G): Res$ which is precisely post-composition with the inclusion
functor i : H — G, Indy := k[G] @) —, and Coind§ := Homyy (k[G], —). Notice that for all

V € Rep, (H) and all W € Rep;, (G), the Hom-Tensor adjunction gives
Homg (Indg (V) ,W) =~ Homg (k [G] Qi) Vs W) =~ Hompg (V, Homy,q (k [G] ,W)) =~ Hompg (V, W)

where the last isomorphism arises from the isomorphism Homyg (k [G], W) = Res% (W) = W of

H-representations. In this way, Indg is realized as a left adjoint to Resg. Dually, the isomorphism
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Res% (W) = k[G] @) W together with the Hom-Tensor adjunction gives
Homy (W @y k [G], V) = Home (W, Homy (k [G], V) = Homg (W, Coindf (V)

which realizes Coind$ as a right adjoint to Res%. Identifying Repy, (G) and Repy (H) with the
functor categories Fun (G, Vecty) and Fun (H, Vect;,) respectively, Res$; = — oi =: i, and we
obtain the adjunction

Fun (G, Vecty)
Li(-) i Ri(-)

Fun (H, Vecty,)

where L; = Ind% and R; = Coind§,.

Example. Colimits and Limits.

Colimits can be interpreted as left Kan extensions and limits as right Kan extensions. Let us
consider F': C — D be any functor. Take * to be the terminal category consisting of one object and
only the identity morphism. Consider

F

C——7D
Gl/
H

*

and notice that for a functor H : * — D and natural transformation v : F' = HG, since H picks
out a single object object in D, HG = A (X) where X = H (¥) € Ob (D) and A : D — DC is the
constant functor. In particular, any morphism + : F = HG is precisely v : F = A (X) for some
X € Ob (D). In this case, the UMP for the Left Kan extension of F' along G is precisely the UMP
for Colim (F). Dually, RgF is realized as Lim (F).

Example. Adjunctions.
Let F:C = D : G be a pair of adjoint functors. Then we have the unit and counit morphisms
n:1lde = GF and € : FG = Idp. The unit 7 realizes G as a left Kan extension of Id¢ along F' and

the counit ¢ realizes F' as a right Kan extension of Idp along G.

Lemma 1.9. Left adjoint functors preserve left Kan extensions.
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Proof. Suppose F' : C — D has a Left Kan extension (LgF,n) along G : C — £. Given an adjoint

pair L : D = B : R with unit ¢ : Idp — RL and counit v : LR — Id¢, consider the diagram

By UMP for Left Kan extensions, there exists a natural morphism a : Lg (LF) — Lo LgF. The
lemma is precisely saying that provided L has a right adjoint, « is an isomorphism.

For any H : £ — B, we have isomorphisms of sets

Hompun(ep) (Lo LgF, H) = Hompune ) (LcF, RH)

I

Hompyn(c,p) (F, RHG)
= HomFun(C,B) (LF, HG)

where the first and third isomorphism is due to the adjunction L* : Fun (£,D) = Fun (&, B) : R*
of the pre-composition functors F* and R* coming from the adjunction of the pair (L, R) and the
second isomorphism is from the UMP for left Kan extensions. By Yoneda lemma, L o LgF =

L (LF). Take H = L o LgF and consider the image of Idjor,r under the above isomorphisms
Idporgr = tLgF = LLgFoG © N > L.

More precisely, (L o LgF, Ln) is also Left Kan extension of LF' along G. O

This lemma suggests that LgF can be expressed as the colimit of some natural diagrams. In
fact, there are two natural diagrams for which LgF (or equivalently RgF') can be expressed as a
colimit (or limit): (co)slice and (co)end diagrams.

Slice Categories and Pointwise Kan Extensions

Given a functor G : C — £ and a fixed object e € Ob (£), define the slice category over e, denoted
G/Je, by Ob(G/e) = {(c, f) : ¢ € Ob(C), f : Ge — ¢} and Homg/, ((c, f), <cf)) to be the set
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consisting of morphisms ¢ € Homg (c, c/> making the following diagram commute

G
Ge—%- G .

|7

d

The slice category G /e comes together with a forgetful functor U : G/e — C, mapping (¢, f) — c and
forgetting the commutative property of the morphisms. Given functors F : C — D and G : C — &,
consider the diagram G/e Yo 5 op. Assuming the colimit of FU exists, define L/gi’ e =
colim{G/e Ye 5y D}. Any morphism ¢ : e — € in £ induces a functor ¢, : G/e — GJe

mapping (¢, f) — (¢, o f)). Moreover, we have a commutative diagram

G/BLCLD

.

GJe Y .c-E D
thereby obtaining a morphism of colimits ¢, : LoFe — LoFe' . If LaFe exists for all e € Ob (&),

then L/C;Z/T defines a functor L/G\f‘ : € — D.

Proposition 1.5. Under the above assumptions, we have a natural isomorphism of functors 1/1877 =

LgF.

The proposition follows from a direct comparison of the UMP for colimits and Left Kan exten-

sions. As a consequence, we obtain the explicit formula
: U F
LeFe = colim {G/e NN D} (14)

whenever they exist.

Definition 1.32. If colim {G/e YL D} exists for all e € Ob (£) so that LgF is given by

equation [14] above, then LgF is called a pointwise Left Kan extension.

Remark. If D is cocomplete, then any left Kan extension of a functor whose target is D is automat-

ically pointwise. In practice however, D is not always cocomplete (for example, Ho (C) for a model
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category C or D (A) for an abelian category A are rarely cocomplete). Still, for some “good” pairs

(F, @), Left Kan extensions may happen to be pointwise.

Definition 1.33. A left Kan extension is called absolute if for all H : D — B in the diagram

the natural morphism « : Lg (HF) — H o LgF is an isomorphism. Namely, every such H preserves

LgF.
Exercise 1.12. Show that any absolute Kan extension is pointwise.

Exercise 1.13. Consider the following diagram

C

T
Ra(FL)

5 —_— o/
Lr(GR)

D

If Lr (GR) and R¢ (FL) exist and both are absolute, then they are adjoint. An example of this is
when C and D are model categories and G and F' are localization functors, then any Quillen pair

(L, R) satisfies this condition, namely, (LL, RR) is an adjoint pair

L
C = D .
loci lloc
LL
Ho (C) T Ho (D)

Corollary 1.7. Assume LgF is pointwise and G is fully faithful. Then the natural map n: F —

LgF oG is an isomorphism of functors.

Proof. Take any ¢ € Ob(C) and consider the comma category G/Gc. Since G is fully faithful,
G/Gc has a terminal object * = (¢,Idg.). Note also that if 7 has a terminal object %, then for
any diagram F' : J — D, colimy (F) = F (x). In particular, for any ¢ € Ob(C), LgF (Ge) =
colim (G/Gc Yo Ly D) = F (U (c,1dg.)) = Fe. Hence, LgF o G = F. O
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Coends and Kan extensions

Coends are special kinds of colimits defined as follows: Assume D is a cocomplete category with

arbitrary coproducts and C is a small category. Given a bifunctor S : C? x C — D, define the coend

of S by

f*
c€0b(C)
/ S (¢, c) := Coeq I Sde)_2 II Sleo)

fie—d f«  c€O0b(C)
fEMor(C)

where f* =S (f,Id): S(d,c) = S (c,c) and f, = S(Id, f) : S(d,c) — S(d,d). By UMP for colim-

its, a coend X := fCEOb(C) S (¢, ¢) comes together with a family of morphisms {¢. : S (¢,c) — X}CeOb(c)

S (d,e) —L= S (c, ) . I~) B
f*l ltpc (‘u/’n..)z
7>

S(d,d) 2= X

making the diagram

e
commute and is initial among all such pairs. eé’

We can extend some natural constructions as coends of some bifunctors.

Example. Colimits as coends.
28 |
Take a functor F' : C — D and define a bifunctor\S : C? x C — D by (c ,c) — Fc and

THL -\
e cHN—> Ero)

(f/, f) — F'f which is constant on the first argument.

c€0b(C)
/ S (¢, c) = Coeq O Fe_ T U Fe Y~ golimerF.
féi\i;’{é) feerf c€OD(C)

Indeed, X := fCEOb(C) S (¢,c¢) comes together with a family of maps {p.: Fc — X}Ceob (¢) such

LJFL )UF

¥ 28)?q I

k}ﬁ? \“ / K= Coj;;WI

commutes and is 1n1t1a1 among all such families. This is precisely the UMP for the colimit of F'.
et B> X i S
\ u%d (=2 i ¥y
73 “Q\A 2 wl
Wl

that for all morphisms f : ¢ — ¢ in D the following diagram

Example. Functor tensor products.
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Let R be an associative ring with unity and let M € Ob (Mod—R) and N € Ob (R—Mod).
Consider R as a category R with a single object {*} and Hompg (*,*) = R. A right R module M can
be thought of as a functor M : R? — Ab mapping x +— M and R > r — (R, : M — M, m — m.r).
Similarly, a left R module N is a functor N : R — Ab mapping * — N and R > r —
(Ly : N = N,n+ r.n). Define a bifunctor S :== M ®z N : R?? x R — Ab by (x,%) — M ®z N
and <r, 7“/) — R, ® L. Then

. R,®1 M ®7 N
M&sN = C M®;N__M@®zN ;=
/ z OQQ{ TGEBR e 9L, oz } (mren—m®@rn:vr € R,me M,n € N)

hence [*M ®z N = M ®p N.

We can generalize this construction to tensor products of functors. Let C be a small category
and R an associative ring. Let M : C? — Mod—R and N : C — R—Mod be functors. Such an M
is usually called a right (C, R) module and N a left (C, R) module. Define

S:=MXgrN:C?xC— Ab

by <cl,c) — Mc ®pNecon objects and by (c, 1 d,,ci> d> > (S(f’,f) : Md ®r Nc — Mc @p Nd)
on morphisms where S (f’,f) = Mf (=) @r Nf(=),m @ n — Mf'(m') @ Nf(n). Define the

functor tensor product by

c€0b(C)
M@c,RN::/ MRrN= P Mc®gNc/U
ce0b(C)

where U is the subgroup of @ceOb(C) Mec®pg Ne generated by M f(m') @gn—m' ®@g N f(n) for all
(f D — c') € Mor (C),m' € Mc', and n € Ne.

Note that taking R =7 and C = R we recover the original tensor product of modules, namely,
M @Rz N = M ®grN. Furthermore, taking M to be the constant functor M = R : C®? — Mod—R
mapping every object to R and every morphism to the identity morphism. Then RXp N : CP xC —
Ab is defined by (¢, ¢) = Rz Ne = Ne on objects and (f', f) — N f on morphism. In particular,

since the bifunctor R X N is constant on the first argument, R ®¢ g N = Colim (V).
Exercise 1.14. Fix A € Ob(C) and consider h* := R[Hom¢ (A, —)] : C — R—Mod to be the
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composition of Home (A4, —) : C — Set and the free left module functor R[—] : Set - R—Mod
and hg := R [Hom¢ (—, A)] : C? — Mod—R defined similarly. Given M : C? — Mod—R and
N : C — R—Mod, show that hy ®c.r N = N (A) and M ®c g h* = M (A).

Remark. The functor tensor product defines a bifunctor
— ®c,gr — : Fun (C”?, Mod—R) x Fun (C, R—Mod) — Ab
which is right exact and balanced and therefore has a left derived functor (M, N) — Tor$® (M, N).

Left Kan Extensions as Coends: Given F:C — D and G : C — &, the goal is to compute
LgF in terms of coends. Namely, we need to define a bifunctor S, : C°? x C — D for each e € Ob (&)
whose coend will compute LgFle.

Fix e € Ob (€) and define S. on objects by

(c, c/> — Homg (Gcl,e> - Fe=: H (Fe),,

(cli;d,cgd>l—> Se(f,;f): H (Fe); — H (Fd);

i:Gc —e j:Gd —e
where S, ( £ f) i : (Fe); = (Fd),.;- Then S, defines a bifunctor.

Theorem 1.14. IfC is a cocomplete category with arbitrary coproducts, then LgFe = fce 0b(C) Homg (Gc/, e>~

Fe.

Example. Induced representations.

Let H < G be groups and p : H — AutiV a representation of H. Consider G and H as
one-object categories G and H, then p : H — Vecty is a functor defined by * — V on objects and
h — p (h) on morphisms. Then the induced representation of p can realized as a left Kan extension

of p along the inclusion functor i : H — G. Using coends, we can explicitly compute L; (p) as
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follows

f*
Li(p) = Coeq{ @ kGl @V ___k[Gl@x V }
heH fe
where f*|, : kK[G]®,V — E[G]®;V is defined by g®v — g®p (h) v and fi|p : k[G]@rV — k[G]@LV

is defined by g®v + gh®uv. In particular, L; (p) = k [G]@rV/ (9 @ p (h) v — gh ® v) = k[G] @ m V-

Example. Geometric Realization.

Let A be the cosimplicial category and let X, : A°? — Top be a “good” simplicial space. Here
“good” means that geometric realization will work well, or Reedy cofibrant spaces, see section 2.3 in
IK'T]. The geometric realization | X,| is defined as follows: Consider the geometric simplex, namely,
the functor A* : A — Top, defined by [n] — A™ = {(zo,...,2) € R" T : 3" (2, =1,2; >0}
on objects and mapping a morphism [n] EN [m] to f* : R*TL — R™FL e s efiy- Let h @ A —
Fun (A°P Set) =: sSet be the Yoneda functor and i : sSet — sTop the natural inclusion. Consider
G =1io h and define

X, = Lo (A%) (X.).

Let A, [n] be the image of [n] under the Yoneda functor h : A < sSet, then |A, [n]| = A™.

Example. Derived Functors. Let C be a category with a “nice” class of morphisms W C Mor (C).
Morally speaking, we want W to contain all isomorphisms in C and to be closed under compositions.
Then, we can formally define the category C [W]_l, called the localization of C at W. The category
C [I/V]f1 is characterized by the UMP: Given any functor F': C — D inverting every f € W, that is
Ff is an isomorphism in D, there is a unique functor F : C[W] ' — D making commutative the

following diagram

c—EX .p
of &
cw)t

where Q : C — C[W] ! is the localization functor, the functor so that (C W]t ,Q) solves this
universal problem.

A simple example is when C is the category Com (Ab) of complexes of abelian groups. Take
W to be the class of quasi-isomorphisms, namely, morphisms of complexes f : Ko — M, so that

the induced map on homology He (f) : He (Ke) — He (M,) is an isomorphism. An example of
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quasi-isomorphisms come from short exact sequences as follows. Consider the short exact sequence
0= A5 B3 C = 0 of abelian groups and define complexes K, = [O A% B0 and

My =10 - 0— C — 0]. Consider the map f : Ko — M, of complexes given by

K, 0 A—"~B 0 .
fl lo lo lp lo
M, 0 0 C 0

Then 0 - A % B % C — 0 is exact if and ounly if f is a quasi-isomorphism. The category
D

Com (Ab) [W]~! =: D (ADb) is called the (unbounded) derived category.

Idea of derived functors: Consider a functor F' : C — D and a class W C Mor (C) of “nice”

morphisms in C.

Definition 1.34. A left (respectively right) derived functor of F' is the right (respectively left)
Kan extension of F along the localization functor Q : C — C[W]™!, denoted RF := LoF and

LF := RoF.

In practice, both categories C and D carry some classes We C Mor (C) and Wp C Mor (D) of

“nice” morphisms and we want a functor F : C[We] ™' — D [Wp] ' making the diagram

commutative. If F (W¢) € Wp, then such an F' does not exist. The idea is to replace F by left
or right Kan extensions. Specifically, we define the (total) left ( and right) derived functors by the

following rule

LF:= Rg, (QpoF) RF:=Lg.(QpoF) -

This definition is due to Quillen.

77



2 ADDITIVE CATEGORIES

Part III

Classical Homological Algebra

Outline:
1. Additive/Abelian categories
2. Classical derived functors: definitions and functors

3. Examples: Tor, Ext, Sheaf (co)homology

2 Additive Categories

2.1 Additive Categories

Definition 2.1. A category A is preadditive (Z-category) if

AB1 VX,Y € Ob(A), Hom 4 (X,Y) has a structure of an abelian group and the composition map

is biadditive, i.e. it factors as follows.

o: Hom 4 (X,Y) x Hom (Y, Z) Hom 4 (X, Z)

N ——

Hom 4 (X,Y) ® Hom4 (Y, Z)

Definition 2.2. A preadditive category A is called additive if
AB2 A is pointed, i.e. there exists an initial object () 4 and a terminal object x4 and they coincide.

AB3 A has pointwise (hence finite) products, i.e. VX, Y € Ob(A), X x Y exists.

Notation: We call ) 4 = x4 = 04 the null object in A.

Homy (04, X) = Homy4 (X,04) =0,VX € Ob(A).

Exercise 2.1. Show that the following categories are additive.
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1. Ab the category of abelian groups.
2. R — Mod and Mod — R the category of left or right modules over R, where R is any ring.
3. VB (X) the category of vector bundles over a topological space X.
4. Sh (X) the category of abelian sheaves on a variety X.
5. Qcoh (X) the category quasi-coherent sheaves on a variety X.
Exercise 2.2. If A is additive and C is small, then Fun (C, A) is additive.

Solution. The composition of natural transformations

P
/F2\U/a\
Co———— s oA
W
F3
is given by
A4 AP A
F1fl F2fJ/ F3fi
FB-“*s ;B "2 1B

Since A is additive, the horizontal composition map is biadditive, which shows that the composition
of natural transformations is also biadditive.

The initial object in Fun (C, A) is the constant functor A (0) : C'+— 0, which is also the terminal
object.

The product of F} and F; is Fy X Fy, given by (Fy x Fy) C := F1C x F3C, and similarly Fy | | F»
is given by (Fy || F2) C = F1C || F>C. Since A is additive,

(F x B)C = FC x B,C = RC| |RC = (R |B)cvoec.

Therefore F1 X F2 = F1 |_|F2

Exercise 2.3. Let A be a category with a single object , A is a Z-category if and only if Hom 4 (, *)

is an associative ring with 1. In this case A is not additive.
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Proof. Notice that the multiplication in Hom 4 (*, %) is given by morphism composition. 0l
Lemma 2.1. In any additive category, a finite product is always a coproduct, i.e. X 1Y =2 X x Y.

Proof. Recall that X x Y represents the functor

A®? — Set

Z +— Homy (Z,X)xHomy (Z,Y)

i.e. there exists a natural bijection
¥ :Homu (Z,X x Y) = Homyu (Z, X) x Homu (Z,Y) ,VZ € Ob(A). (15)
Take Z = X x Y and consider
Y (Idxxy)=(px: X XY =5 X,py : X xY =Y) (16)
By Yoneda lemma, we can express v in terms of px and py,

V(f:Z—=XxY)=(pxofprof)

Define ix : X — X xY by iy = ¢! (Idx,0) where 0 : X — Y is the zero morphism and
iy : Y — X xY by iy =171 (0,Idy) where 0 : Y — X is the zero morphism.

Notice by the equation [16| we have the relation ¢ (ix) = (Idx,0) which implies

pxoix =Idxy pyoix =0 (17)

and v (iy') = (0,Idy) which implies

px oty =0 pyoiy =Idy (18)
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In addition, we have

px (ixpx +ivpy) = (pxix)px + (pxiv)py =px +0=px

py (ixpx +iypy) = (pyix)px + (pyiy) py =0+ py = py

and it follows that

ixpx +iypy = Idxxy (19)

For any Z € Ob(A) we construct mutually bijections

Hom4 (X xY,Z) <— Homy(X,Z) x Homy (Y, Z2)

fopx +gopy <— (f,9)

p: XXY 7 +— (poix,poiy)

This follows from the relations and

Hence X x Y corepresents

A — Set

Z +— Homy (X,Z) x Homy (Y, 2)
so X||Y existsand X | |]Y =2 X x Y. O

Notation. We will use “@” for “x = | J’. Thus X @Y comes together with 4 maps ix,iy,px, Py

satisfying the relations [17] [I8 and [I9]

Exercise 2.4. Show that the relations and [I9] characterize X @ Y uniquely up to unique

isomorphism, i.e. given Z € Ob(.A) with
Px:Z—=Xpy  Z—=Yiv: X—=>2Ziy:Y =7

satisfying the relations and there exists a unique ¢ : Z = X @Y such that the following

four diagrams commutes.

P’x

N

XoY

VA X
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Z Py Y
Xay
X X XpY
%
iy
7z
Y Y L XaY

N,

Proof. Using the UMP of X @Y there exists a unique ¢ : Z — X @Y such that

Z Px X
X%

Xayvy
Z Py Y
X %
XaY

and a unique ¢ : X &Y — Z such that

X x A
®
(5%

XoY

Y s A
©
iy

XoY

Then

Idy = i'ypx +iypy = pixpx ¢ + piypyd = ¢ (ixpx + iyvpy) ¢ = 0o
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and
ldx = plyi’y = pxdpix
Idy = pyiy = py ¢piy
0 = pyiy = pxopiy
0 = pyiy = pydpix
Hence

ldxey = ixpx+ixpy+iypx+ivpy = ix (pxopix) px+ix (pxdpiy) py+iy (py dpix) px+iy (py dpiy) py = ixk

Hence ¢ : Z — X @Y is an isomorphism with inverse . O

Exercise 2.5. Give an example showing that infinite coproduct does not coincide with product

(even if they both exists).

Proof. In R — Mod, given an infinite index category I, the coproduct is

H X; = {($i>iel |z; € X;,only finitely many nonzero xz}
il

but the product is

HXi = {(xi)iel ’:Ul € Xl}
el
Exercise 2.6. Show that
1. A is additive if and only if A is additive.
2. If A, B are additive, then A x B is additive.

Remark 2.1. Additivity (of a category) is an intrinsic property, not an extra structure (unlike

“triangulated” categories). Indeed, if in any category C with finite products and coproducts, there
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are two natural maps associated to each X € Ob(C)

Ax: X - X x X,Ax =1Idx xIdx diagonal map
Vx: X[ |X = X,Vx =Idx | |Idx codiagonal or folding map

Exercise 2.7. Show that the additive structure on each Hom 4 (X,Y") is given by

+: Homy (X,Y) x Homy (X,Y) — Homy (X,Y)
(f1,f2) — fitfa=Vyo(fi® fo)oAx

Proof. The diagonal map Ax : X — X @ X satisfies prAx = Idx for £k = 1,2. The folding map
Vx : X & X — X satisfies Vxip =Idx for k =1,2.
Given any two maps f1, fo : X — Y, there exists a unique morphism fi® fo : XX - Y Y

such that p; o (fl fan) fg) 1 = 5klfk
We can therefore define fi + fo = Vy o (f1 @ f2) o Ax. This is associative and commutative.

f+0= f because f &0 =1iy0 fopy. It’s also bilinear. O
A is additive if and only if

e A is pointed, and

e A has finite products and coproducts and they coincide.

e Each Hom 4 (X,Y) is additive with respect to “+” defined in the exercise .

2.2 Additive Functors
Let A, B be two additive categories.

Definition 2.3. A functor F' : A — B is additive if for any X,Y € A, F : Homy (X,Y) —

Hompg (FX, FY) is a homomorphism of abelian groups.
Example 2.1. (Additive functors)
1. forgetful functor R — Mod — Ab.

2. (Continuous) section functors I' : VB (X) — Sh (X)), where VB (X) is the category of vector

bundles on a space X and Sh (X) is the category of abelian sheaves on X.
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3. & AxA— A

4. Let Mg be a right R-module, the functor

M®r—: R—Mod — Ab
N — M®rN

Example 2.2. Restriction/extension of scalars.
Given a ring homomorphism f : A — B, we denote the triple of additive functors ( s fe f !),

(resp. extension, restriction, coinduction)

B — Mod
I Lo | f
A — Mod

We have
f*: A—Mod — B-—Mod

M — B®aM

when we consider B as a B, A-bimodule B4, whose right A-module structure is given by b-a =

b- f(a). And
f's A—Mod — B — Mod

M — HomA(ABB,M)

where the B-module structure on Homy4 (4Bp, M) is given by b- f (m) = f (m - b).

Recall the tensor-hom adjunction aM,g N, Q4

Homp (2 ®4 M,N) = Hom 4 (M,Homp (2, N))
M = Homp (2, N)

(f:Q®a M —-N) — 0 — N
m —

w = f(w®m)
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is an isomorphism. As a consequence,

Homp (f* (M), N) = Homp (B ©4 M, N) = Hom (M, Homg (B, N)) = Homa (M, f. (N))
On the other hand, we can identify f. (N) = 2Bp ®p N, and we have

Homy (f, (N), M) = Hom (B ®5 N, M) 2 Homp (N, Homyu (B, M)) = Homp (N, 7 (M))

Example 2.3. Nonadditive functors between additive categories: Tensor, symmetric and
exterior powers.

Let R be a commutative ring, for n > 2,

Q": R—Mod — R — Mod
M — M®R-~~®RM

n

Sym: R—Mod — R — Mod

M = Sym’ (M) = p—
y R ( ) <m1®‘,.®7nn—m071(1)®-.-®m0_71(n)|mi€M>UEs

ANp: R—Mod — R — Mod

M o AR (M) = Mo
/\R( ) <m1®-~~®mn—Sgn(a)mU_1<1>®~~~®m0—1(")\mieM>

o€Sn

Lemma 2.2. If A, B are two additive categories, F' : A — B is an additive functor, then there

exists a natural isomorphism

F(X®Y)2F(X)®F(Y),¥X,Y € Ob(A).

Proof. Recall X @Y is an object in A characterized uniquely by specifying 4 morphisms

px : XBY — X py : XY —»Y
ix: X —>XpY iy:Y -2 XY

satisfying the relations and Applying F to the four morphisms px,py,ix,iy, we get
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F(X®Y) e Ob(B) together with F (px),F (py), F (ix), F (iy) which also satisfies the relations
and [19] hence by uniqueness

F(X®Y)2F(X)®F(Y),VX,Y € Ob(A).

O

If A, B are additive categories, then the additive functor F' : A — B form a (full) subcategory
Fun 44 (A, B) C Fun (A, B).

Exercise 2.8. Show that Funagq (A, B) is strictly full, i.e. if FF = F', F € Funpgqq (A, B), then
F' e Funjgq (A,B)

Proof. Let a: F = F’ be the natural isomorphism between F and F’. For any X,Y € Ob(A), and

fig: X =Y in A, we have the following commuting diagrams

FX 25 P
Ffl J{F’f

FY 25 Fly

FX 25 p'X
Fgl \LF’g

FY 25 Fy

FX 25 p'X
F(f+g)l lF'<f+g>

FY 25 Fy

Since F' is additive, F'(f +g) = Ff + Fg, so
Ff+Fg= ()zyoFfoa;{l—|—0¢yoFgoa)_(1 =ayo(Ff —|—Fg)004)_(1 =ayoF (f —|—g)oa;{1 =F(f+yg),

i.e. F'is additive. O

Funagq (A, B) is an additive category. See nice example below.
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Exercise 2.9. Show that a natural equivalence of categories (assume both A, B are small, though

not necessary)

Fun (A x B,C) = Fun (A, Fun (B,(C))

restricts to an equivalence of categories
Funpgqq (A x B,C) = Funpgq (A, Funaqq (B,C))
Proof. The equivalence of categories
Fun (A x B,C) = Fun (A, Fun (5,C))
is given by

p: Fun(AxB,C) = Fun (A, Fun (B,0))

(F:AxB—C) ¢(F): A — Fun(B,C)
X = F(X,-)

If F' is additive, i.e. F' is a biadditive functor A x B — C, then ¢ (F)(X) = F(X,-): B — Cis

additive because for any g1,g2 : Y1 — Yo,

(F)(X)(g1+92) = F(X,=) (g1 +92) = F(ldx, g1 + g2) = F (Idx, g1)+F (Idx, g2) = ¢ (F) (X) (91)+¢ (F) (X)

and ¢ (F) : X — F (X, —) is additive because for any fi, fo: X1 = Xa, g: Y7 — Yo,

o(F)(fi+ f2)(9) =F (fi+ fa,9) = F(f1,9) + F (fo,9) = ¢ (F) (f1) (9) + ¢ (F) (f2) (9) -

Note that if A is additive, then for each X € Ob(A),

hx = Homy (—, X) : A% — Set

hX = Homu (X, —) : A — Set
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factor through
hx = HomA(—,X) : A? — Ab

h* =Homy (X,—): A— Ab

Exercise 2.10. Show that hx € Funaqq (A%, Ab) and h* € Funagq (A, Ab) and the Yoneda

functors
h* A = Flll’lAdd (.AOp,Ab)

X = hX

h*: A — FunAdd(.A,Ab)
X hX

are additive.

Proof. It suffices to prove for hx and dualize to get hX. For any f,g:Y — Z in A

hx (f+9)=(f+9)": Homy(Z,X) — Homy(Y,X)
h = (f+9) (h)=ho(f+g)=hof+hog=f"(h)+g"(h)=(f"+¢

we have hx (f +9) = (f +9)" = f*+g* = hx (f) + hx (g). Hence hy is additive.
For f,g: X =Y,

hf_;,_g: hX:HOHlA(—,X) — hy:HomA(—,Y)
h = (f+g)oh=foh+goh=hys(h)+hg(h)=(hs+hg)(h)
we have hyy, = hy + hy, so h, is additive. O

Lemma 2.3. Let A, B be additive, F': A= B : G is an adjoint pair, then F is additive if and only

if G is additive.

Proof. Assume that F is additive, consider the natural bijection associated to (F,G), then

¢ : Homy (X, GY) = Homg (FX,Y)
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is an isomorphism of abelian groups. Indeed, v can be expressed as
b(f: X = GY) = <nyoF(f):FX£f+FGYn—Y>Y>

where n : FG — Idp is the counit of (F,G).
Note that f — Ff is additive because F is additive, and ¢ — ny o ¢ is additive because B is

additive (the composition map is bilinear). This implies that
Homy (—, G (—)) 2 Homg (F (—),—) : A? x B— Ab

as abelian groups. Since Funagqq (A, B) is strictly full, Hom4 (—, G (—)) € Funagqq (A? x B, Ab) =
Funpgq (A%, Funaqq (B, Ab)), so G is additive. 0

Non-additive bimodules. Let R be an associative ring with 1 (we work over Z).
Recall that a bimodule over R is an abelian group which is both a left and right R-module and
the two structures are balanced in the sense (a-m)-b=a-(m-b),Vm € M,Va,b € R. Equivalently,

we have the following commuting diagram.

RoMoRE™ Ro M
ol e
M®R-—"F M

Consider the full subcategory F (R) of R—Mod with Ob (F (R)) = {0, R, R%?,.-- R ...} _ =

n>0

N. Note that F (R) is a small additive subcategory of R — Mod. Consider
F(R) :=Fun(F(R),R —Mod)

this is an abelian category because F (R) is small. (Proof see next lecture.)
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There is a natural functor

©: Bimod(R) — F(R)
M: F(R) — R — Mod
M —
R* +— M®prR"x M
Remark 2.2. It may seem more natural to replace F (R) with P (R) the full subcategory of finitely

generated projective R-modules, but for our purposes F (R) suffices.

Theorem 2.1. © is a fully faithful functor and it essential images are precisely Funsq (F (R), R — Mod).
Thus © : Bimod (R) = Funyy (F(R),R—Mod). Bimodules over R can be viewed as additive
functors F (R) — R — Mod.

Definition 2.4. The objects of F (R) are called “nonadditive bimodules”. F (R) is the category of

nonadditive bimodules.

This is a nice abelian category we can do homological algebra.

Proof. The main thing we need to prove is that all additive functors are isomorphic to some M.
Suppose T' € Ob(F (R)) is an additive functor. Define M = T (R) the value of T on R. By
definition, M € Ob(R — Mod). There is a natural ring isomorphism A : R? — Endgr (M) defined
by

12

ReP EndR (RR) = HomF(R) (R, R) L HomF(R) (TR, TR) = EndR (M)

z: R - R

r = r-x

T is an additive functor implies that A is a ring homomorphism. Then define

MR — M

meb — m-b:= X\ (m)

we have

(a-m)-b=Xy(a-m)=aX\,(m)=a-(m-b).
So M is an R-bimodule. O
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Exercise 2.11. The functor © : Bimod (R) — F (R) has both left and right adjoints.
Question: What is the use of it?

The classical Hochschild homology can be defined by HH* (R, M) = Extp;.q.r) (R, M) where
© 1 R o, M N And THH" (R, M) = Fxt’y ) (B, M),

Theorem 2.2. (Pirashvili-Waldhauser) THH* (R, M) is canonically isomorphic to the topological

Hochschild homology.

If R is an algebra over field k then HH* 2 THH*.

2.3 Kernels and Cokernels in Additive Categories
Kernels

Let A be an additive category. F,G : A — Ab are additive functors and o : F = G is a morphism

of functors. Then we can define

Ker(a): A — Ab
7 — Kerap <FZ°‘—Z>GZ>

This is an additive functor, which follows from the commutative diagram in Ab

Ker (a) (Z)C F7Z -Gz
I
I Ker(a)(¢p) iF«J iGw

v
Ker (o) (Z')C FZ GZ'

Q

for any ¢ : Z — Z'. There exists a unique arrow Ker () (¢) : Ker (a) (Z) — Ker («) (Z), which
defines Ker () on morphisms.

We can use this to define kernels and cokernels in A.
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Let f: X — Y be any morphism in A. We know that

A — FunAdd (.AOP,Ab)
X — hx = Homyu (—, X)

he: hy — h
(f: X =Y) o foo X Y

g = fog

gives an embedding of additive categories, so we can associate to f a morphism of Yoneda functors

hy: hx — hy and define

Definition 2.5. The kernel of f : X — Y in A is an object K € Ob(.A) that represents

Ker (hy): A? — Ab
7 — Kerap (HomA (Z,X) f—*>HomA(Z,Y))

By definition, if K exists, then we have a canonical exact sequence of abelian groups

0 — Hom 4 (Z,K) — Hom 4 (Z,X) — Hom 4 (Z,Y)

for any Z € Ob(A). Take Z = K, the image of Idx in Homy4 (K, X) gives a canonical morphism

k: K — X. Define Ker (f) = (K, k) as the kernel of f. This is unique up to isomorphism.

—_—

f
Exercise 2.12. Show that for f : X — Y, there is a canonical isomorphism Ker (f) = eq { X Y }

provided both exists.

Proof. For any g : Z — X such that

we have fog=0:2Z — Y, so by the exact sequence
0 — Homyu (Z, K) % Hom (2, X) L5 Homu (Z,Y)
there must exists a unique g : Z — K such that ko g = g, so by the universal property of equalizer,
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f
Ker(f)ﬁeq{X Y}. O
0

Cokernels

A similar definition of Cokernel does not work, because the functor

Coker (hy): AP — Ab
Z — Cokerap (HomA (Z,X) L Homa (Z,Y))

is not representable even in simplest cases.

If Coker (hy) is representable, we would have short exact sequence
Homa (Z, X) L5 Homu (2,Y) < Homy (Z,C) — 0
for any Z € Ob(A). This is wrong!
Counterexample: Let A=Ab, X =Y =7, f:Z 5 Z,n > 2.

Hom (Z/n,Z) — Hom (Z/n,Z) — Hom (Z/n,Z/n) — 0

| I i
0 0 0

To define Coker (f) in a correct way, we dualize the Yoneda embedding.

Definition 2.6. The cokernel of f: X — Y in A is an object C' € Ob(A) representing

Ker (hf) AP — Ab
Z — Kerap (Hom A, 2) L5 Homy (X, Z))

By definition, if C' exists, then we have a canonical exact sequence of abelian groups
0 — Homy (C,Z) — Homy (Y, Z) — Homy (X, Z)

for any Z € Ob(A). Take Z = C, the image of Id¢ in Hom 4 (Y, C) gives a canonical morphism

c¢:Y — C. Define Coker (f) = (C,c) as the cokernel of f. This is unique up to isomorphism.
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—_—

f
Exercise 2.13. Show that for f : X — Y, there is a canonical isomorphism Coker (f) = coeq{ X Y }
0

provided both exists.
NowwehavngXLY%C.

Definition 2.7. For f: X — Y, we define
Im (f) = (Ker (Y < c) ,j)
Coim (f) = <Coker (K LN X) z)
such that

K—k>X—i>Coim(f)f—>Im(f)j—>Y—c>C

\—/

f
Proposition 2.1. Assume that A has kernels and cokernels, then for any f: X — Y, there exists

a unique f : Coim (f) — Im(f) such that f = jo foi.

Proof. Based on (repeated use of) the following lemma. Since co f = 0, there exists a unique
f'+ X = Im(f) such that jo f/ = f. Also we have fok = jo f ok = 0, and use the fact
that j is a monomorphism (see remark , we have f’ ok = 0, so there exists a unique map

f: Coim (f) — Im (f) such that f' = foi. O
Lemma 2.4. Forany f : X — Y in A,

1. If Ker(f) exists, then for g: X' = X, fog=0<= 3¢ : X' = K such that g=ko g .

2. If Coker(f) ewists, then for h: Y —Y' hof=0<=3h :C =Y’ such that h =h oc.

Proof. The first statement follows from the exact sequence
0 — Hom 4 (X', K) % Hom 4 (X, X) £ Hom 4 (X', Y)

fog=0<=geKer(fs) =Im(k.) <3¢ : X' = K such that g=kog'.

The second statement follows from the exact sequence

0 — Hom (C,Y") <> Hom 4 (Y, Y") L5 Homy (X, V)
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hof=0<= feKer(f*)=Im(c*) <= 3h :C — Y’ such that h=h oc. O

Example 2.4. In A = Ab or R — Mod, the existence of f and the fact that f is an isomorphism

is part of the first isomorphism theorem.
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3 Abelian Categories

Recall that we define an additive category A as characterized by [2.1] We will add one more

axiom [3.1] to define abelian categories.
3.1 Abelian Categories

Definition 3.1. A is an abelian category if it is additive and also satisfying

AB4 Every f : X — Y has kernel and cokernel for any X,Y € Ob(A), and the canonical map

f:Coim (f) — Im (f) is an isomorphsim, i.e. there exists factorization

K—fox_t.7 Yy > C
7

where (K, k) = Ker (f), (C,c) = Coker (f), (I,i) = Coker (k), (I,j) = Ker (c).

Example 3.1. Additive but not abelian categories.

1. F(R) /P (R) is additive but not abelian.

2. filtered modules or abelian groups are not abelian categories.

3. topological modules or abelian groups are not abelian.
Definition 3.2. Let f: X — Y be a morphism in A.

1. fis mono if K =0, and we denote f: X — Y. In this case, X is called a subobject of Y.

2. fisepiif C =0, and we denote f: X — Y. In this case, Y is called the quotient of X.
Exercise 3.1. Show that for any f: X — Y, k is mono and c is epi.

Proof. Let (K', k') = Ker (K), we have

such that fok = 0 and ko ¥/ = 0. By the universal property we know that &' = 0 (unique

factorization), so K = 0. k is mono and similarly we have c is epi. O
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Lemma 3.1. (Grothendieck) The a:m'om is equivalent to the combination of two axioms,
AB4.1 A has kernels and cokernels.

AB4.2 [f for f : X — Y we have Ker(f) = Coker(f) = 0, then f is an isomorphism (i.e. f is

both mono and epi, see definition below).
In particular, this says that kernel and cokernel exists for every f € Mor (A).

Proof. Assume that the axiom [3.1/holds, given f : X — Y, we can define (K, k) = Ker (f),(C,c) =
Coker (f), (I,i) = Coker (k), (I’,j) = Ker (¢) . And we have a factorization as follows

Then Coker (f) = Ker (f) =0 (Why?). By the axiom f: 1 — I'is an isomorphism.
Assume that the axiom holds, Consider f: X — Y with Ker (f) = Coker (f) = 0, then we

have an isomorphism
(X,Idx) = Coker (0 - X) = Ker (Y — 0) = (Y, Idy)

which is f itself.
k

Hence f is an isomorphism. O

Exercise 3.2. In any abelian category, for any composable f: X — Y and g: Y — Z, we have

1. Ker(f) — Ker (¢gf) and they are equal if Ker (g) = 0.
2. Coker (gf) < Coker(g) and they are equal if Coker (f) = 0.
3. If fisepithen gf =0<= ¢g=0. If g is mono then gf =0« f =0.

Remark 3.1. f is mono is equivalent to say that for any g,h: Z — X, if fog= foh, then g = h.
This is because fo (g —h) = fog— foh =0, and by definition, g — h factors through K = 0, so
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g—h=0,ie. g=h. fisepiisis equivalent to say that for any g,h : Y — Z,if go f = ho f,
then g = h. This is because (g —h)o f = go f —ho f =0, and by definition, g — h factors through
C=0,80g—h=0,ie g=h.

3.2 Examples of Abelian Categories

The categories Ab, R — Mod, Mod — R are abelian, where R is an associative unital ring. The

category of R-bimodules

Bimod (R)

12

Mod (R¢)

12

R°¢ — Mod

a-m-b = m-(b®a’) = (a®D’)-m

where R = R ® R is also abelian.
In these example, kernels and cokernels are defined in the usual way and the axiom is

equivalent to the first isomorphism theorem:.

Lemma 3.2. We have
1. A is abelian if and only if AP is abelian. (All azioms are self-dual).
2. If A, B are abelian, so is A X B.

Lemma 3.3. If C is small and A is abelian, then Fun (C,.A) is abelian.

Proof. We've shown that if A is additive, AC is additive. We only need to check the axiom
Kernels and cokernels in AC are defined pointwisely. Let F,G : C — A be two functors, ¢ : F = G
a morphism of functors. Define Ker () = (K : C — A,k : K = F) as follows:

K is given by:

Objects: VX € Ob(C), KX = Ker (FX £, GX). Note that kernels in A induces morphisms
kx: KX — FX,VX € Ob(C).

Morphisms: Vf : X — Y in C, we have

KX ™. px X gx
|
| K f iFf Gfl

Y
KY . py 2. gy
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where there exists a unique K f : KX — KY which completes the (commutative) diagram. Indeed,

pyoFfokx =Gfopxokx =0,s0 Ffokx factors through ky, which gives Kf : KX — KY.

This defines K (f) and shows that k = {kx : KX — GX}XeOb(C) is a morphism of functors. (K, k)

is the kernel, since it satisfies the universal property by checking it pointwise and satisfies naturality.
Coker (¢) = (C, ¢) is defined similarly “pointwise” or “objectwise”.

The axiom (3.1 holds because it holds in .A. Coker (k) 2 Ker (c) is given by

5= {¢X : Coker (Ker (px)) — Ker (Coker (¢X))}X€Ob(c)

so ¢ is an isomorphism in.AC. O
Corollary 3.1. The category of nonadditive bimodules F (R) is abelian.

Corollary 3.2. If X is a topological space, the category Pr (X) of presheaves on abelian categories

15 abelian.

Question: what about sheaves?

3.3 Sheaves of Abelian Groups

Let X be a topological space. A presheaf is a functor

F: Open(X)” — Ab

U —~ FU
with
0 UgV
Hom (U, V) =
—- UCU

and F (U —=V) = pg : F'V — FU called the restriction map, satisfying VU CV C W, pg o p‘(/V =

pEV, i.e. F' preserves compositions.

Definition 3.3. (Sheaf Axiom) A presheaf is a sheaf if for any open subset U C X and open
cover {U;},.; of U, and any sections {e; € FU;};.; such that pgszj (e;) = pgszi (ej) whenever

U; NU; # 0, then we have a unique e € FU such that e; = pgi (e),Viel.
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Note that a presheaf fails to be a sheaf if either there are not enough global sections or uniqueness

of restrictions fails.

Definition 3.4. Sh (X) is the full subcategory of Pr (X) so it comes together with an inclusion
functor

s:Pr(X)=Sh(X):1
Theorem 3.1. This inclusion functor i : Sh (X) — Pr (X) has a left adjoint s : Pr (X) — Sh (X).

Remark 3.2. We are trying to make Sh (X) abelian in naive way., i.e. for ¢ : F = G a morphism

of sheaves, define

Kergn () = Kerpy (ip) = {Ker (o : FU = GU)}ycopopen(x))

U Ker () (U) =Ker (¢py : FU — GU) = Kerpy (ip) (U)
U — Coker (¢) (U) = Coker (¢ : FU — GU) = Cokerpy (ip) (U)
Exercise 3.3. Check that Ker (¢) is a sheaf by Coker (¢) is not a sheaf.

The correct way to define Coker () is

Definition 3.5. Define U — Coker (¢) (U) by f € Coker (¢) (U) <= there exists a covering
{Ui};er of U such that pgi (f) € Cokerpy (i¢) (U) . This gives a sheaf which is called Coker (¢).

Assume that the axiom is true, then we have
s:Pr(X)=Sh(X):1

such that si = IdSh(X)

Proposition 3.1. If ¢ : F = G in Sh (X), consider the decomposition

K5irLr1lhigs o
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in Pr(X) , apply s to this we have
K2sK B0 q 040

This is a decomposition in Sh (X).
This holds (in general) abstractly.

Proposition 3.2. Given an adjoint pair s : A B : i such that soi = Idg where A is abelian, we

can make B abelian by defining

Kerpp = Ker4 (ip)

Cokergy = s (Cokery (ip))
This is called transfer principle.

There is a similar statement for model/triangulated categories.
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4 Homological Algebra

4.1 Complexes

Let A be an abelian category.

Definition 4.1. A cochain (cohomological) complex in A'is a sequence of morphisms X*® = (X", d"), .,
ey x 2yt ﬂ)Xn+2_>...

satisfying that d? = 0.

Definition 4.2. Dually, a chain (homological) complex in A is a sequence of morphisms X, =

(X’fl7 dn)nGZ

d dn—1
"'_>Xn_n>Xn—ln_>Xn—2_>"'

satisfying that d? = 0.

Convention. When working with unbounded complexes (no extra constraints) we can pass from

cohomological to homological notation by setting X1o™ := X" vn ¢ Z.

Any property or fact for cohomological complexes has an analogue for homological complexes. By

a complex, we will mean cohomological complex (unless stated otherwise).

Definition 4.3. A morphism of complexes f® : X* — Y'® is a sequence of morphisms (" : X" — Y™"), _,

such that

commutes, for any n € Z. Write Com (A) for the category of (unbounded) complexes of A.

Theorem 4.1. Com (A) is an abelian category with kernels and cokernels defined term-wise (or

degree-wise).
Proof is similar to that Fun (C,.A) is abelian, where C is small.
Example 4.1. If A= R — Mod, Com (R — Mod) is the category of complexes of R-modules.
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Example 4.2. (DG-modules) Let R be a differential Z-graded ring R = @Rn as a Z-module, i.e.
nez

1. R*- R™ C R*m
2. 1p € RO

such that R is equipped with differential d
ooy g 4 prtl ﬁ;R"HH...

such that d"t'd" = 0, making it a complex, and d satisfies the Leibniz rule, i.e. for homogeneous
a,be R,

d(ab) = (da) -b+ (-1)"a- (db), a€ R"™ -
Note that d (1g) = 0 by the rule.

Example 4.3. An ordinary ring R can be viewed as a DG ring by setting R®* = [0 — R — 0] with
d = 0. Rings — DGRings is a fully faithful embedding.

Remark 4.1. DG rings are monoids in the monoidal category Com (Ab) with respect to tensor

product
®: Com(Ab) x Com(Ab) — Com (Ab)
(X*,Y*) = X°QY*
where (X ®Y)"= @ X' @Y7 andd: (X QY)" = (X QY)"" is given by dy gy = Idx ®
i+j=n
dy + dx ® Idy, or explicitly, forr € X" and y e Y™, d(z ®y) =de @y + (—1)" 2 ® dy.
Definition 4.4. A left DG module M*® over a DG ring R® is a graded R®*-module such that

1. M* = @ M™ with left R*-action R®*®@M® — M* such that R"@M* — M™% qa@m — a-m.
nez

2. there is a differential dj; on M*® making (M®,dys) a complex.
3. dy(a-m) =dg(a) -m+ (=1)%a-dy (m),Va € Rle,me M.
Write DGMod (R) for the category of DG modules over R.

Notice that if we think of a ring R as a DG ring, then Com (R — Mod) = DGMod (R) with

la] =0,dr = 0.
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Exercise 4.1. DGMod (R) is an abelian category.

Example 4.4. (Mixed complexes) Take A = A (z) = k[z] / (2?) = (0)@{% with |z| = 1 and dp = 0.

Definition 4.5. A right homological DG module over A is called a mized compler. Explicitly, a

mixed complex (M, b, B) is a complex My = |--+ — M, ﬁil—) M, b, My,_1—---
1. with > =0, {b} = —1, and

2. aright A-action M @ A — M, i.e.

B: M, — My

where B2 = 0,|B| = 1.

3. it satisfies Leibniz rule, bB + Bb = 0.

Cohomology

Fix a complex X*® = (X",d"), .7 in A and consider

Coker (d™)
~ ~ bn+1

~

Cc

dn+1 ~

X" ar Xn+1 Xn+2 .

Ker (d"1)

since d"*!d" = 0, there exists a unique a” : X™ — Ker (d"*!) such that k o a™ = d" and a unique
bt Coker (d") — X™*2 such that " ="l oc.

By the axiom we have

X — % Ker (1) s X+ S Coker (d) s X7+

! K I A o A

| gn | | pn+1 |
I

Y cok |

Y
K Coker (a") - — - =2'— - - > Ker (b"1) C

note that Coker (a™) = Coker (k') and Ker (b"') = Ker (/).
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Definition 4.6. The n-th cohomology H" (X) is defined by H™ (X) := Coker (a”) = Ker (b"*1).
This defines additive functors H" : Com (A) — A. We will often denote
H*: Com(A) — Com/(A)

(X*,d) = (H*(X),0)

Exercise 4.2. If R is a DG ring, M is a DG module, then H® (M) is a graded H*® (R)-module, so
H* restricts to a functor H* : DGMod (R) — grMod (H* (R)).

Proof. Let [z] € H" (R) = Kerd;™ /lmd}, and [m] € H' (M) = Kerd)' /lmd',, then [z] - m] =
(z +Imdp) - (m +Imd},) = zm + Imd7 ! since Vm' € M!,Va' € R", and Vz € Kerd};tt, Vm €
Kerd, ', we have z - dm’ = d (zm’) € Tmdy ™ and da’ - m = d (z'm) € Imd7™, and da’ - dm’ =
d(z' - dm’) € Tmd"+'. Also, d (:cmﬂmdg;ﬁ“) = d(zm) = dz-m + (=1)"" - dm = 0, so

[2] - [m] € Kerd 72 /Imd . O

Definition 4.7. A complex X®* € Com (A) is ezact in degree n if H" (X) = 0. A complex

X*® € Com (A) is acyclic if H* (X) = 0.

In classical homological algebra, the complexes
0=-X—->Y—=>2-0 (20)

play a distinguished role (“test functions” for additive functors).
Definition 4.8. The complex 20]is called

1. left exact if the complex [20]is exact at X and Y.

2. right exact if the complex 20]is exact at Y and Z.

3. short exact sequence if the complex [20]is exact at X, Y and Z.

Example 4.5. For any f: X — Y, 0 — Ker (f) Lx Ly 5 o0islefs exact, and 0> X Ly

Coker (f) — 0 is right exact.

Lemmad.1. 05X LY % 272 50is
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1. left exact if and only if 0 — Hom (A, X) ELN Hom (A,Y) L5 Hom (A, Z) — 0 is left exact for
any A € Ob(A).

2. right exact if and only if 0 — Hom (Z, A) EAN Hom (Y, A) L Hom (X,A) — 0 is left exact for
any A € Ob(A).

Proof. 1f 0 — X Iov % 7 55 0s lefs exact, f is mono and Ker(g) = Im (f). Consider 0 —
Hom (A, X) % Hom (4,Y) £ Hom (4, Z) — 0, if f* (h) = foh = 0 where h: A — X, since f is
mono, h = 0, so f, is mono. Im (f,) C Ker (g.) since g.o fs (h) = gofoh =0,Yh: A — X. For any
t: A — Y suchthat g, (t) = got =0, forany a € A, t (a) € Ker (g) = Im (f), so there exists a unique
x € X such that f(z) =t(a), set s: A — X,a — z, then s(a; + a2) = 1 + z2 = s(a1) + s (a2)
and s (ra) =rz =1-s(a) since t(ra) =rt(a) =rf (x) = f (rz), therefore s € Hom (A, X). Hence
Im (f+) = Ker (g«). Thus 0 — Hom (A4, X) , Hom (A,Y) £ Hom (A, Z) — 0 is left exact for any
A€ Ob(A).

If 0 - Hom (A, X) , Hom (A,Y) L5 Hom (A, Z) — 0 is left exact for any A € Ob(A), since
f« is mono, i.e. for any h : A — X, foh = 0 implies h = 0, it follows that f is mono. Take
A =X and Idy € Hom (X, X), g. o fu (Idx) = go f =0, so Im (f) C Ker(g). Take A = Ker(g)
and k : A — Y, since g« (k) = gok =0, k € Im(f,), i.e. kK = foh for some h : A — X, so
Ker (g) C Im (f). Hence 0 — X Lo v % Z 5 0is left exact.

0 XLy %2z 5o0is right exact, g is epi and Ker(g) = Im(f). Consider 0 —
Hom (Z, A) L Hom (Y, A) 15 Hom (X, A) — 0, since g is epi, for any h: Z — A, g* (h) = hog = 0
implies h = 0, so ¢g* is mono. f*og* = (go f)* = 0, so Im (¢*) C Ker (f*). If t € Ker (f*), i.e.
0=tof:X — A, for any z € Z, since g is epi, there exists y € Y such that ¢g(y) = z, set
h:Z — A,z t(y). This map is well-defined, since if there exists ¥’ € Y such that g (v') = z,
y—y €Ker(g) =Im(f), say y—¢' = f (x) for z € X, then t (y) =t (y) =t (y —¢/) =t (f (x))
Hence Im (¢g*) = Ker (f*), 0 — Hom (Z, A) 9 Hom (Y, A) s Hom (X, A) — 0 is left exact.

0.

If 0 » Hom (Z, A) 7 Hom (Y, A) s Hom (X,A) — 0 is left exact, ¢* is mono and f* o g* =
(go f)* =0,s0gisepiand gof = 0. Consider A = Coker (f)and c: Y — A, then f*(c) = cof =0,
so ¢ € Ker (f*) =Im(¢*), c=hogfor some h: Z - A=Y/Im(f), so Ker(g) C Im(f). Hence

0= XLV % Z 5 0is right exact. 0
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4.2 Exact Functors

Let A, B be two abelian categories and F': A — B an additive functor.
Definition 4.9. F' is called

1. left exact if 0 - FX — FY — FZ is exact for any left exact triple 0 - X - Y — Z.

2. right exact if FX — FY — FZ — 0 is exact for any right exact triple X - Y — Z — 0.
Example 4.6. For any A € Ob(A),

1. h*: A — Ab, X +— Hom (A, X) is left exact.

2. ha: A’ - Ab, X — Hom (X, A) is right exact.

Theorem 4.2. (Adjoininess v.s. Fxactness) Let F' : A = B : G be a pair of adjoint additive

functors between two abelian categories, then F' is right exact and G is left exact.

Proof. To see that F is right exact, it suffices to show that for any right exact 0 — X ER TNy /N 0,

0 —— Hom (FX,A) —— Hom (FY,A) —— Hom (FZ, A)

)

0 —— Hom (X,GA) —— Hom (Y,GA) —— Hom (Z,GA)
is left exact. This follows from Lemma K.1] and the fact that h? is left exact. O

Corollary 4.1. If F' is both left adjoint and right adjoint, then F is ezact.

Example 4.7. If f : A — B is a ring homomorphism, we have the triple of additive functors

(f*, T f!), (resp. extension, restriction, coinduction)

B — Mod
I f« |
A — Mod
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where

f*: A—Mod — B - Mod
M = B®aM
when we consider B as a B, A-bimodule gB 4, whose right A-module structure is given by b-a =
b- f(a), and
f'' A—Mod — B — Mod
M — Homy (4Bp, M)

Then f* is right exact, f, is exact and f' is left exact.

Example 4.8. (Zuckerman functor) Let g be a complex semisimple Lie algebra and h C g a Cartan
subalgebra. If M € Ob(g — Mod), an element m € M is called h-finite if dimc (Uh - m) < co. The
subspace of all h-finite elements in M form a g-submodule My = {m € M|dimc (Uh - m) < oo}.
The Zuckerman functor

(=)y : 9 —Mod — g — Mod

is left exact (not exact) but not right adjoint.

Mitchell Theorem

In Ab and R — Mod, various properties (i.e. commutativity of diagrams) can be checked element-
wise by diagrammatic chasing. In an arbitrary abelian category with no forgetful functor to Set,

objects do not have elements. There are two ways to deal with this.

1. Given object X € Ob(A) we can look at “Y-elements” or “Y-points” Hom 4 (Y, X) for each
Y € Ob(A), i.e. identifying X with functors hx via the embedding A < Fun (A, Ab).

2. Based on Mitchell Theorem.

Theorem 4.3. (Mitchell) Let A be a small abelian category, then there exists an associative unital
ring R together with an exact strictly fully faithful functor A — R — Mod, i.e. A can be identified

with a full subcategory of a module category.

In practice, any property or claim which involves finitely many objects, morphisms and which holds
in any module category must hold in any abelian category A. Indeed, we can always take Ag to be

generated the objects involved and apply Mitchell embedding.
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Example 4.9. (Snake lemma) In any abelian category A, consider the commutative diagram

0 Aq By 4 0
.
0 As By Cy 0

with exact rows, then there exists J : Ker () — Coker () making the exact sequence

- — Ker(a)(A) — Ker(8) H™(C)

0

—_—r
H"(A) (B)

H(C) ——— 0
It suffices to check this in module category, see Lemma [4.8]

Definition 4.10. In any category A, a square

x .oy (21)

9 p

71w

is called

1. Cartesian if X 2Y Xy Z, i.e. X represents the functor

AP — Set

A — {(p,9) € Hom (A,Y) x Hom (4, Z) |[pp = qi}

2. Cocartesian if W 2 Y Ly Z, i.e. W corepresents the functor

A — Set

A — {(p,¥) € Hom (Y, A) x Hom (Z, A) |of = ¥g}

Exercise 4.3. Let A be an abelian category, define the sequence associated to the diagram

P
<f g) —q
O—>%(—>Y619Z—>Ig/—>() (22)
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Show that
1. the complex [22]is a complex if and only if the diagram 21] commutes.
2. the complex [22]is left exact if and only if the diagram [21]is Cartesian.
3. the complex [22]is right exact if and only if the diagram [21]is Cocartesian.

Proof. (1) is trivial. We will prove (2). The complex [22]is left exact if and only if X is the kernel
of Y& Z — W, if and only if for any Aand f': A —Y,¢ : A — Z such that g¢’oq = f'op, i.e. the

composition A — Y @& Z — W is zero, there exists a unique t : A — X such that

if and only if the diagram [21]is Cartesian.
(3) can be proved in the similar manner. The complex [22|is right exact if and only if W is the
cokernel of X — Y @ Z if and only if the diagram [21]is Cocartesian. O

Exercise 4.4. Let H°, H', H? denote the cohomology of the complex Prove or disprove
1. H® 2 Ker (g : Kerf — Kerq).
2. H' = Coker (p : Cokerf — Cokerq)

3. There exists an exact triple

0 — Coker (g : Kerf — Kerq) — H? — Ker (p : Cokerf — Cokerq) — 0

Exercise 4.5. Show that

1. The diagram [21}is Cartesian if and only if g induces an isomorphism Ker (f) = Ker (¢) and p

induces a monomorphism Coker (f) < Coker (q).
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2. The diagram [21|is Cocartesian if and only if p induces an isomorphism Coker f =, Coker (q)
and g induces an epimorphism Ker (f) — Ker (¢)
Hint: It suffices to prove (1) and replacing A with A% will imply (2).

Warning: Mitchell theorem does not apply to properties involving infinitely many objects.

Exercise 4.6. In R — Mod, an infinite product of exact triples is exact, but in Sh (X)) this is not
true in general. We will see this later. Also Qcoh (X) for smooth projective variety X does not
have any projective objects.

4.3 Projective and Injective Objects

Let A be an abelian category.

Definition 4.11. An object P € Ob(A) is projective if Hom 4 (P,—) : A — Ab is exact.
Definition 4.12. An object I € Ob(A) is injective if Hom4 (—,I) : A — Ab is exact.

Remark 4.2. Projectives in A is equivalent to injectives in A°%. But this does not mean that

projectives and injectives have similar properties (since A and AP are very different categories).

Note: Hom 4 (P, —) is always left exact for any P € Ob(A), so P is projective means that

Hom 4 (P, —) is right exact.
Clavm 4.1. The following are equivalent:
1. P is projective.
2. Forany X - Y — Z — 0 exact, Homy4 (P, X) — Homy (P,Y) — Homy (P, Z) — 0 is exact.
3. Forany Y — Z — 0 epi, Homy (P,Y) — Homu (P, Z) — 0 is epi.

4. For any Y — Z — 0 epi and any ¢ : P — Z, there exists ¢ such that

commutes.
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We have similar result for injectives.

Clavm 4.2. The following are equivalent:
1. I is injective.
2. For any 0 — X — Y exact, Hom4 (Y, I) — Homy (X, I) — 0 is exact.
3. For any 0 - X — Y mono, Hom 4 (Y, I) — Hom 4 (X, 1) — 0 is epi.

4. For any 0 - X — Y mono and any ¢ : X — I, there exists ¢ such that

00— X—=Y

N

[
[
\i
I

commutes.

Lemma 4.2.

1. P € Ob(A) is projective if and only if for any p : X — P there is an isomorphism X = X'® P

such that p factors as

X—SXagagp®sop

~_ 7

p

2. I € Ob(A) is injective if and only if for any i : [ — X there is an isomorphism X = X' @ I

such that i factors as

](_C“ﬂX/@[;X

Proof. We will prove (1). The proof of (2) is similar.

If P is projective, given p : X — P, consider
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such that pi = Idp, so i is mono. Put X’ = Ker (p) with ' : X’ < X being the canonical inclusion.
Note pi’ = 0.
0 XX P
i
Note p (Idx — ip) = p—pip =p—p =0, (Idx —ip) € Ker (p.) = Im (i), so there exists p’ : X — X’
such that Idx —ip = ¢'p’.
We claim that p'i’ = Idx, and p'i = 0. ¢'p/i’ = (Idx —ip)i' =i —ipi’ =i, 04 (p'i' —Idx/) =0,

and since i’ is mono, p'i’ = Idxs. i'p'i = (Idx —ip)i = i — ipi = 0, and since ¢’ is mono, p'i = 0.

Thus we get a split exact sequence

i p
00— X' X P——0
4 (

so X=X"&@P.

Assume 7 :Y — Zisonto and ¢ : P — Z. Put X = Ker[(—7,¢) : Y ® P — Z] and define
[X&P} = [X =Y ®P > P| and [X&Y} = [X <Y ®P Y] . Since  is onto, p is onto
(indeed, if € P, then there exists y € Y such that 7 (y) = ¢ (), take (y,z) € X and p (y,z) = z).
By assumption, p splits, so there exists s : P — X such that ps = Idp. Define ¢ = gs, then 7@ = ¢

as required. O

Definition 4.13. An object Y € Ob(A) is an extension of Z € Ob(A) by X € Ob(A) if there

exists an exact triple 0 - X - Y — Z — 0.

Notation. Proj(.A) is the class of projective objects in A. Inj (A) is the class of injective objects
in A.

Exercise 4.7. Show that
1. Proj (A) and Inj (A) are closed under extension and direct sums.
2. Proj(A) and Inj(A) are closed under taking direct summands.

3. Proj(A) is closed under taking kernels of epimorphisms, i.e. if p : P, — Py with Py, P,

projective, then Ker (p) is projective.
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4. Inj (A) is closed under taking cokernels of monomorphisms, i.e. if i : [ < Iy with 1, I

injective them Coker (7) is injective.

Proof. (1) and (2) are straightforward. We only need to prove (3), and then (4) is similar.

Consider the short exact sequence

p

0 Py—ts P Py 0

where Py = Ker (p), it splits because Py is projective, and we have

% p
O—FR__~Ph___P——0

I \ t
I
y ¥

Y 7 ——>0

Forany o : Pp = Z, pos: P - Z extendsto ¢ : P - Y, then p =¢oi: Py = Y is the desired
extension since

TOQ=To@oil=posoi=p.

4.4 Projective and Injective Modules

Definition 4.14. An abelian category A has enough projectives if for any X € Ob (A), there exists

P — X epi with P projective.

Definition 4.15. An abelian category A has enough injectives if for any X € Ob (A), there exists

X < I mono with I injective.

Theorem 4.4. Let R be a unital associative ring. R — Mod and Mod — R has enough projective

and injective modules.

Projective Modules

Lemma 4.3. Fvery free module is projective.
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Proof. The forgetful functor U : R — Mod — Set has left adjoint, the free functor

R(-): Set = R—Mod :U
S =  R(S)

where R (S) is the free R-module based on S. Hompg (R (S), M) = Homget (S, M).
Sets are free in the sense that for any surjective p : X — Y, p, : Hom (S, X) — Hom (S,Y) is
surjective.
S
~ /
<P/ s/ iw
2

X—Y ——=0

If M, N are R-modules, p: M — N is epi, then Up: UM — UN is onto, so

Homges (S, UM) —— Homges (S, UN)

| -

Homp (R (S), M) — Homp (R (S), N)

1R

Hence Homp (R (S), —) is exact, so R (S) is projective. O

Corollary 4.2. P is a projective R-module if and only if P is a direct summand of a free module,
i.e. there exists Q € Ob(R — Mod) such that P & Q = R (S5).

Corollary 4.3. R — Mod has enough projectives.

Proof. For any M € Ob(R —Mod), R(UM) — M. O

Remark 4.3. The problem of describing projectives for a specific R is not trivial.

Exercise 4.8. If X is an affine variety over a field k, then for R = O (X) the coordinate ring,

O (X) — Mod = Qcoh (X) the category of quasi-coherent sheaves on X.

o

O (X) — Mod Qcoh (X)
O (X) — Mod8 (X) <= cohJ (X)

N

Proj (O (X) — Mod') (X) ~—— VB (X)
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where VB (X) = {locally free finite rank sheaves on X}.

Question 1:  How to distinguish nontrivial (non free) projective modules from trivial ones.
Let P(R) be the subcategory of finitely generated projective modules in R — Mod. The
Grothendieck group of R is defined by

Ko (R) == Z (iso-classes of f.g. projectives) / ([P] = [P1] + [P2] |0 = P — P — P» — 0 exact)
P, is stably isomorphic to P if [P1] = [P2] in Ko (R), i.e. there exists @) € Ob (P (R)) such that
P ® Q= P,® Q. Note we can always choose ) to be free.
Definition 4.16. P is called stably free if P is stably isomorphic to a free module, i.e. P&R"™ = R™.

Remark 4.4. Stably free need not to be free.

Example 4.10. Let R = O (S?) be the coordinate ring of real 2-sphere 52. R =R [z,y, 2] / (2* + y* 4+ 22 — 1).

Define a R-module homomorphism
e R3 —» R
(a,8,7) = az+pPy+yz

Notice that 7 (x,y,2) = 1 in R. This means that 7 has a section

s: R — R3

r o= (rz,ry,r2)
and mo s = Idg. Put P = Ker (7), then P @ R R3, so P is stably free of rank 2.
Claim. P is not free.

Proof. (Topological). Based on Hairy Ball theorem.
Assume that P is free, then P = R? and R? ® R = R3, then we can choose a new basis of

R3 {e1 = (z,y,2),e2 = (f,9,h),es = (f', ¢, 1)} where f,f,g,4',h,h/ € R can be considered as
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polynomial functions on S2. Then

z ff
d:det Yy g g/ ERX

z h R

is a unit.

Define a continuous vector field on S?: v — (f (v),g(v),h(v)) € R3. Since d # 0 on S?,
this vector field is nowhere vanishing. If we project orthogonally this vector field to each tangent
plane to S2, we can get non-vanishing vector field tangent to S? which contradicts with Hairy Ball

theorem. 0

Exercise 4.9. Show that for any commutative R, a finitely generated stably free module of rank 1

must be free. P® R™ 2= R™"! for some n.

Hint: use A% exterior power functor.

Question 2: Given a ring R, how to describe (find and classify up to honest isomorphism)

finitely generated projective modules over R?

Serre conjecture: all projectives over R are free. Equivalently, there are no nontrivial algebraic
vector bundles on A},

Quillen and Suslin proved this in 1976. Proof is long and elementary.

Example 4.11. (Weyl algebra) Let k be a field with char (k) = 0. Extend k [z1,- -+, z,] by adding

derivatives.
An (k) =k (@1, an, 01,0+, 0n) [ ([ws, 5] = [0, 0;] = 0,105, 45] = 645) 1<, j<

When n =1, A4; (k) = %.

Ky (A, (k) = Z, hence every projective is stably free.

Theorem 4.5. [Stafford, 1981] Every stably free A, (k)-module of rank > 2 is free, but for each

n > 1, there is no stably free module of rank 1.
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For A; (k), there are classified by Wilson, B in 1999. For A, (k),n > 2, this is open.
Problem: Given a left ideal I C A,, (k), find conditions when I is projective.

Exercise 4.10. Let R = A; (k), show that I = Rz™*! + R (20 + m) is projective but not free,

m > 1.

Injective Modules

Proposition 4.1. (Baer Criterion) I is injective in R — Mod if and only z'f holds for left ideals

in R, i.e. for any left ideal J C R and any ¢ : J — I there exists ¢ : R — I such that p; = .

Proof. Take X CY and ¢ : X — I, we need to extend p to ¢ : ¥ — I.

Consider the set ¥ = {(X',¢': X' = I)|X C X' CY,¢|x = ¢}. Note that . is a poset with
respect to inclusion and every chain is bounded above by Y. By Zorn’s lemma, there exists (Xo, ¢o)
a maximal element in .. We claim that Xy = Y. Assume that Xg C Y, take y € Y\ X, define

X1 =Xo+ Ry CY. It comes with projection

p: Xo®R — X
(1’0,0) = X

O,r) = ry
Take J = Ker (p), then we have a exact sequence in R — Mod

0 J 52 xiaRE X, =0 (24)
Note that p|x, : Xo < Xj is mono, so iz : J — R is injective. (Indeed, if a,b € J,a # b, then
(i1 (a) ,i2 (a)) # (i1 (b),i2 (D). If i1 (a) = i1 (b), then iz (a) # i2(b). . If i1 (a) # i1 (D), since
p(i1(a), iz (a)) = p (i1 (b) iz (b)) = 0, p(0,iz (b)) = —p (i1 (b)) # —p (i1 (a),0) = p(0,i2(a)), so
i2 (a) # 12 (b). Hence iz : J — R is injective.)

We can identify J as a left ideal in R via i9. Since|24|is right exact, we have X1 = XOHR, and
J

119



4.4 Projective and Injective Modules 4 HOMOLOGICAL ALGEBRA

a Cocartesian diagram

®o I

Consider 1 : J a, Xo 29, I, and by assumption we can extend it to 12 : R — I such that ?;|J = 1.

Since ¢ and ¢q agree on .J, we have a canonical extension ¢; : X = XOHR — I such that
J
1lxo = ¢o.

The existence of ¢ contradicts with the maximality of (Xo, o), so Xo =Y, and ¢o:Y — I is

the desired extension. O
Next we will discuss properties of injectives from another aspect.

Definition 4.17. A nonzero element 0 # r € R is called (left) regular if R, : R — R,x + ar is

injective, i.e. xr = 0 implies x = 0.

Definition 4.18. A left module M is called divisible if rM = M for any left regular r € R, i.e. for

any m € M and any regular r € R, there exists m’ € M such that rm’ = m.
Note that a quotient of a divisible module is divisible.

Example 4.12. R =7, M = Q is divisible as Z-module, so is Q/Z.

Lemma 4.4. For any R, injective R-modules are divisible.

Proof. Take any regular r € R, consider the exact sequence
0RSR—-R/R-7—0
If I is injective, apply Homp (—, I) to this short exact sequence we get a new short exact sequence
0 ——= Hompg (R/R-r,I) —— Homp (R,I) —— Homp (R, 1) ——0

)

1 = 1

1%
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hence rI = 1. O
Lemma 4.5. If R is a (left) PID, every divisible is injective.

Proof. Take any left ideal J C R, since R is a (left) PID, there exists r € R such that J = R - r.
r is regular since R is a domain. Any ¢ : J — M is determined by m = ¢ (r) € M, since

o(x-r)=zp(r)=x-m,Vz € R. Take m’ € M such that r - m’ = m, define

p: R - M

x — xm
then @|; = ¢ because ¢ (zr) = z¢ (r) = zrm’ = xm. O
Corollary 4.4. Ab has enough injectives.

Proof. Ab = Z — Mod where Z is PID. Note products and quotients of injectives are injectives.
For any Z-module M, define I (M) = [Iyom,r,0/2) Q/Z. I (M) is injective, being a product of

injectives, and there is a canonical map i : M — I (M). O

Proposition 4.2. Let F : A = B : G be a pair of additive adjoint functors between abelian

categories, then
1. If F is (left) exact, then G maps injectives to injectives.
2. If G is (right) exact, then F maps projectives to projectives.

Proof. For any I € Ob(B), consider Hom (—,GI) : A’ — Ab,
Hom 4 (—,GI) = Homp (F (—),I) = Homg (—,I)o F'

If I is injective and F' is exact, then Hompg (—, ) o F' is exact, so G (1) is injective. O

Recall associated to the canonical homomorphism of rings ¢ : Z — R is the adjoint triple
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(i, 8s7') )

Z — Mod

where i, is the restriction functor given by Z — R — M, and

*: Z—Mod — R-—Mod
M — R®zM

is the induction functor, and

i' Z—Mod — R —Mod
M +— Homg (R, M)

is the coinduction functor. Then 4* is right exact, i, is exact and i' is left exact. By the above
proposition, i' maps injectives to injectives. Also i' maps monics to monics, and the unit adjunction

associated to (i*, i!) is monic since for any R-module M,
v M — i!i*M
is a monomorphism by considering
nay 2 M = Homp (R, M) C Homg, (R, M) = i‘i, (M)

Finally, we can combine all the these to prove the following theorem.
Theorem 4.6. R — Mod has enough injectives.

Proof. For any R-module M, i, (M) is a Z-module. Since Ab has enough injectives, there exists

an injective Z-module I such that f : i,M < I is a monomorphism in Ab. Apply i' to f, we get

M < i'i, (M) < i* (I)
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and ' (I) is injective in R — Mod. Hence M embeds in an injective in R — Mod. O

4.5 Injective Envelopes and Projective Covers

Let A be an abelian category. Assume A has enough injectives.

Definition 4.19. An injective envelope (hull) of M € Ob(A) is a monomorphism i : M — E in A

with
1. E € Inj(A).

2. For any monomorphism ¢ : M — I with I injective, there exists ¢ : £ < I such that

commutes.
We say that A has injective envelopes if (F, i) exists for every M € Ob(A).

Remark 4.5. ¢ needs not to be unique. If (E, ) exists, it is unique up to non-unique isomorphism.

Dually , assume A has enough projectives.
Definition 4.20. A projective cover of M € Ob(A) is an epimorphism p : P — M in A with
1. P € Proj(A).

2. For any epimorphism 1 : Q — M with Q projective, there exists ¢ : Q — P such that

N

P

commutes.
We say that A has projective covers if (P, p) exists for every M € Ob (A).
There is a useful characterization of injective envelopes in terms of essential extensions.
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Definition 4.21. A monomorphism f : L < F is called essential (or E is called an essential

extension of L) if for any nonzero subobject 0 £ M C E, f (L) N M # (.

Lemma 4.6. If f: L — E and E 1is injective, then E is an essential extension of L if and only if

(E, f) is an injective envelope.

Proof. If (E, f) is an injective envelope, for any subobject 0 # M C FE, we have a canonical

monomorphism i : M — E. If I = f(L)N M = (), Let C = Coker (i), then the composition
g <. ¢

is mono since if co fog=co fohfor g,h: A — L,

g
A— 1l g ¢
h

cofo(g—h)=0,note f((g—h)(A)NM=0,s0 fo(g—h) =0, and since f is mono, g—h = 0,
i.e. g = h. This contradicts with the fact that (F, f) is an injective envelope, so f (L) N M # (.

If F is an essential extension of L, for any a monomorphism ¢ : L < [ with [ injective, we have

0— =1t F
Vﬁi/
@

I

Suppose @ is not mono, then M = Ker (¢) # 0, and f (L) N M = (), which contradicts with the fact

that F is an essential extension of L, so ¢ is mono, hence (F, f) is an injective envelope. O
Thus injective envelopes are maximal essential extensions.

Corollary 4.5. If A has injective envelopes, then E € Inj (A) if and only if any essential extension

1: E — E' is an isomorphism.

Exercise 4.11. Show that k = k [z] / (z) has no projective covers in k [z] — Mod.

Proof. Consider @) = M, (k) which is simple, there is no epimorphism @ — k. O
Corollary 4.6. R — Mod has injective envelopes buy not projective covers.
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Remark 4.6. Even if A has enough injectives, injective envelopes may not exist.

Example 4.13. A = (k[z] — Mod)® has no injective envelopes.

4.6 Main Theorem of Homological Algebra

Let A be an abelian category, Com (A) is the category of complexes over A.
Recall that Com (A) is abelian with kernel and cokernel defined fibre-wise. If f®: X®* — Y* is

a morphism in Com (A), then

dn‘ker(f” dn+1|kel'(fn+l)
—

) Ker (fn+1) Ker (f”+2) .

Ker (f*) := [ — Ker (f™)

Let A®, B®,C*® be three complexes in Com (A), then by definition, 0 — A® EAN - TR ANYo LI

is exact in Com (\A) if and only if 0 — A" I g 9 0m 5 045 exact in A for any n € Z.

Define Exc (A) to be the category with
Objects: short exact complexes {0 B ANy AN LN 0} in Com (A).

Morphisms: commutative diagrams

in Com (A).

Recall we defined the n-th cohomology functor to be

H": Com(A4A) — A
(X*,d*) — H"(X):=Ker(d")/Im (d" ') = Coker (Imd"~! — Kerd") = Ker (Cokerd"~! — Coimd"

We can assemble H™ into one additive functor

H*: Com(A) — Com (A)
(X*,d*) — (H"(X),0),59
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Define for each n € Z two functors F,G" : Exc (A) — A given by

(O—>A' SN TRUANG TR ) =H"(C)  F" (% 9% %) = H" (¢oc)

Fm
G (0 a0 L g 500 0) = HYH(A) G (0% 0508 = H' ()

Lemma 4.7. There is a natural transformation " : F* — G™ for each n € 7, called the connecting

homomorphism.

Proof. Given E = (0 - A— B —C —0) € Ob(Exc(A)), we need to define 6" (E) : H" (C) —
H" 1 (A). Apply Mitchell Theorem and think of objects A, B, C as complexes of modules over a
ring.

Let’s construct 6™ (E) explicitly.

ot gt _
0 An 1 2 o Bn— 1 on 1 0
n—1 m—1 n—1
d’y dp de
m gr
0 A" B" cn 0
d’y dy dg
ntl S o 9
0—=A —B C 0
dn+l dn+1 d'ré«l»l
it gt
An+2 Bn+2 Cn+2 0

Given z € H™ (C), choose ¢ € C™ such that di (c) = 0 and z = [c]. Since g" is epic, there exists
b € B" such that ¢" (b) = c. Note that g"™! (d% (b)) = d% (¢" (b)) = 0, so d (b) € Kerg"™! =
Imf"+1, there exists a unique a € A™*! such that f"1(a) = d} (b). Note that f"2 (d’}! (a)) =
dyt (frtt (a)) = dyTdy (b) = 0, and since f"*2 is mono, dy™! (a) = 0, so a is a (n + 1)-cycle.
Define 6" (E) (z) = [a].

This doesn’t depend on the choice of c¢. Suppose z = [¢/], then ¢/ = ¢+ dy ' (¢") for some ¢’ €
C™1. Then there exists b” € B"~! such that g"~! (b”) = ¢. By commutativity, g" (djy ' (")) =
dt ("), and d (dy ' (b")) = 0, since f*+! is injective, "1 (0) =0, so 6" (E) ([¢]) = [a]. O

Theorem 4.7. For any exact sequence

E=[0—A*— B*— C* — 0] 5 Exc(4)
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the sequence

Tt HM(A) = H'(B) —— H"(C) —— -
1s acyclic, or exact. It’s called long exact cohomology sequence associated to E.
Proof. Routine verification. O

Remark 4.7. The long exact sequence is functorial in the sense that E — LE is a functor Exc (A) —
Com (A).
If we invert cohomological algebra to homological algebra X,=X" then0 > A—B—>C—0

gives
H"'H(A) - H"'H(B) -, Hn+1 (C)

0

ST H"(C)
S A HY(B) —— BN (C)

2 HO(A) HO(B) HO(C) ——— 0

Lemma 4.8. (Snake Lemma) Given commutative diagram in A

0 A1 Bl Cl 0

Pk

0 A2 B2 C2 0

with exact rows, then we have
- —— Ker(a)(A) — Ker(8) —— H""1(C)

0

—m m
H™(A) (B)

H"(C) — 0
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Corollary 4.7. (Five Lemma) If we have

X1 X2 X3 X4 Xl
ifl Zif2 J{fs 2J{f4 £1
Y1 Yo Y3 Yy Y5

then f3 is an isomorphism if the two rows are exvact, and f1 is epi, f5 is mono, fa, f1 are isomor-

phisms.
Remark 4.8. If X1 =Y] = X5 = Y5 = 0, this immediately follows from snake lemma.

Corollary 4.8. (8x3 lemma) In the following diagram,

0 0 0
0 X3 Y1 A 0
0 Xa Yo Za 0
0 X3 Y3 VA 0
0 0 0

If the rows and middle column are exact, then the left column is exact if and only if the right column

18 exact.

4.7 Operations on Complexes

There are various operations and constructions on complexes similar to one’s on spaces.

Quasi-isomorphism and Homotopy Equivalences

Recall that a morphism f : X®* — Y* is a quasi-isomorphism if H" (f) : H" (X) — H" (Y) is an

isomorphism in A for any n € Z.

Example 4.14. X* is acyclic if and only if 0 : X®* — X*® is a quasi-isomorphism.
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Example 4.15. Given a complex |0 — A ENy: NG O] in Com (A), define

X* =0 —- A EI s S 0]
{ lg
Y =0 - 0 - C — 0]

then [0 AL B2 00| is exact if and only if ¢° is a quasi-isomorphism.

Definition 4.22. f,g: X* — Y* are called homotopic in Com (A) if there exists A" : X" — Y"1

such that f* —g¢" = d?/_lh" + hrtln

e — X”—l Xn Xn—i—l

n
fnfl n—1 h n+1

g I frrt

g

s yn-l yn yn+l

Definition 4.23. f* : X* — Y* is called homotopy equivalence in Com (A) if there exists ¢° :
Y*® — X°® such that go f ~Idx and fog~Idy.

Lemma 4.9. If f* ~ g®then H* (f) = H* (g).

Proof. Tt suffices to prove that f ~ 0 if and only if H®* (f) = 0. f ~ 0 implies that ™ = d?/_lh” +

h"“d& then f”\Kerd& = d;‘/_lh” factors through Imd’{;l, so H" (f) =0,Yn € Z. O
Corollary 4.9. Every homotopy equivalence is quasi-isomorphism.

Proof. f®og® ~1dy if and only if H®* (f) o H® (9) = Id, and g® o f* ~ Idy if and only if H® (g) o
H* (f) =1d. Hence H® (f) and H® (g) are quasi-isomorphisms. O

Remark 4.9. Not every quasi-isomorphism is a homotopy equivalence, for example, in A = Ab,

Xxe = [0 Z T 0]
y* = [0 0 7.2 0]

is a quasi-isomorphism but not a homotopy equivalence, since Hom (Y*, X*) = 0.
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This has important implication.

Remark 4.10. Let F: A — B be an additive functor between abelian categories. Extend it degree-

wise to

F*: Com(A) — Com(B)
(X*,dx) — (FX*, Fdy)

Note that even when F'® is not exact, it maps homotopy equivalences to homotopy equivalences.

But F' does not preserve quasi-isomorphism.

Example 4.16. A = Ab, we modify the above example

Xxe = [ 7)27— 7.JAZ —2 > 7|27 7./ AT 0]
: A
ye = [ 0 727 0 727 0]

f*® is a quasi-isomorphism. Take F' = Homy (Z/2,—) : Ab — Ab and apply F to f* we get

2.

FX* = [ —>7/27 —> 7,2 7.)27. 7.)27. 0]
Ffe l(] lO J{O lO
FY* = [ 0 727 0 7.)27. 0]

which is not a quasi-isomorphism.

4.8 Canonical Constructions on Complexes

Suspension

For each k € Z, define a functor [k] : Com (A) — Com (A) with
Objects: (X' [k] ,d;qk]> where X [k]" = X** and df = (~D)F di™.
Morphisms: [k] acts as identity.

Lemma 4.10. [k] is an automorphism of Com (A) with inverse [—k].
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Example 4.17. There exists a natural embedding of categories

A —  Com(A)
X — P%%%@

X n=-k
Note that X [k] = [O — X’; — 0}, [k] shifts degree to the left X [k]" = :
- 0 n#—k

Remark 4.11. In homological notation, Xo — X [k], is defined by X [k],, = X,,_j. In this case,

X:[O—>)§—>O} — X[k]:[0—>)k(—>0] .

Mapping Cones
Let Mor (Com (A)) be the category of morphisms of complexes.

Objects: {f*: X* —>Y*}

Morphisms: Hom (f7, f3) = { (a®,8°)| X —"> X3 commutes

ffi , lff}

Yl. - 5 YQ.

\

Definition 4.24. The mapping cone is a functor

C*: Mor (Com(A)) — Com (A)
(f*:X*=Y*) — C*(f*) =¥ e X*[1],dg)

where ) _
dr)b/ fn+1
yn YnJrl
0 —dytt
XnJrl Xn+2
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1 1 1
- - dg fn+2 dgl/ fn+1 B dg+ dg d7}L/+ fn-i—l _ fn+2d§+ B
Note dp™" o di = = = 0.
0 —dyt? 0 —dytt 0 A2 dtt

Therefore C* (f*) is a well-defined complex. On morphisms, C*® (a®, 5°) = 5* @ a® [1].

Example 4.18. Let f: X — Y be a morphism in A, thinking of f as the morphism between two

0-complexes in Com (A).

C*(fil=Ya X[l = O—>g(1—>10/—>0

then
Ker (f) n=-—1
H" (C*(f)) = { Coker (f) n=0

0 o0.W.

Remark 4.12. C*® (f) is the replacement of kernel and cokernel in D (A) = Com (A) [W~!] which

is additive but not abelian.

Proposition 4.3. For f*: X®* — Y*, we have f is a quasi-isomorphism if and only if C*® (f*) is

acyclic.

Proof. There is a natural short exact sequence of complexes for any f®: X® — Y*,
0—=Y——C*(f)=Y*aX*[]] —X°*[]] —=0

1.e.

0—sYynC_,yn @Xn+1 %X"‘H — =0

is exact for any n € Z. To see that it’s well-defined, we can check

0 Yn( i y”n @XnJrl L>>Xn+l — =0

00— Yn+1(_>i YnJrl @ Xn+2 L» Xn+2 — 0
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commutes by direct computation. Associated long exact sequence in cohomology

6"

S HY(Y) = HY(C(f) = HY (X [1)) = H™ () 25 B (Y) > HY(O(f) —» H™ (X)) = -

where 6" = H"*1 (f). Hence f is a quasi-isomorphism if and only if 6" are isomorphisms for any

n € Z, if and only if H" (C (f)) =0,Yn € Z, i.e. C*(f*) is acyclic. O

Exercise 4.12. Let Com®(A) C Com (A) be the full subcategory of bounded complexes, i.e.
X" =0,Yn > 0. Then Com’ (A) is generated by A in the sense that any complex can be obtained
by taking iterated suspensions and mapping cones. This implies that D°(A) is generated (as a

triangulated category) by A.

Remark 4.13. Let C be a pointed model category. Mor (C) the category of morphisms in C is a

model category.

F: Mor(C) = C G
(x—=>X) <«

(XLY) — *I_IY:colim{*—>Xi>Y}

with

LF : Ho(Mor (C)) = Ho (C) : RG

where

LF (X ER Y) — hocolim (* x4 Y) — hocofibr (X ER Y)

If C = (Com (A),0), then LF =C. If C = Top,, then LF is the classical mapping cone.
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Mapping Cylinder

Given f® : X* — Y*, define Cyl(f) = C*® (C () [-1] LN ) We can write this explicitly.
Cyl(f)=Y*® X* @ X°*[1] as graded objects. Differential is given by

g 0 —frtt
Nl Yn+1
0 d% Idx
® n+1 b
; 0 0 —dy B
Ay Xxn X
S S
Xn—i—l Xn+2
Check that d’é;ll odgy =0,Vn € Z, so Cyl (f) is a complex.
There are two natural exact sequences for any f: X — Y.
0> X* & Cyl(f) o) =0
0 y"
yn
e ™ | x™ =
xn+1
0 xn—l—l
0— Y* 25 Cyl (f) — C(-Idx) —0
n n
Yy Yy o
yn = 0 ) " —
anrl
0 wn-i—l

Proposition 4.4. We have
1. f* is a quasi-isomorphism if and only if ix is a quasi-isomorphism.
2. For any f*: X®* = Y*, ay is a quasi-isomorphism.

Proof. f*® is a quasi-isomorphism if and only if H" (C (f)) = 0,Vn € Z, if and only if every H" (ix)
is isomorphism.

Idx is a quasi-isomorphism, so C' (—Idx) is acyclic, hence ay is a quasi-isomorphism. O
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Exercise 4.13. Show that the morphism

pe: Cyl(f) — Y*

is well-defined and 8o a = Idy and ao 8 > Idgy(y), thus « is a homotopy equivalence.

Proof. By direct computation, f3™ o o™ (y") = y", so foa =Idy. And

y" yr+ (@)
a"o 571 z" = 0 3
mn+1 0
check that

y" 0

S x" — 0

xn-l—l "
defines a chain homotopy between « o 8 and Idcy(y)- 0l

4.9 Classical Derived Functor

Philosophically (classical) interesting objects in abelian categories are expressed in terms of exact
sequences of simple objects, e.g. 0 =& X; — X — X9 — 0. What happens if we apply additive
functors to interesting objects? Unfortunately, interesting functors are usually not exact. If 0 —

FX| - FX — FXo — 0 is not exact, we cannot express F'X in terms of FF X, and FXo.

Idea: we associate to F' some correction in a universal way, the derived functors, to restore cor-

rectness.

o-functors

Let A, B be abelian categories.
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Definition 4.25. A left §-functor is a sequence T' = (77, 51-)1.20 of additive functors T; : A — B and

morphisms of functors ¢; : Tj+1 (X2) — T; (X7) on the category Exc (A) of short exact sequences.

(0—>X1—>X—>X2—>O)I—>T'H_1(X2)

|

0—=X1 =X = Xo—=0)——=T;(X1)

such that for any short exact sequence 0 - X7 — X — X9 — 0 in Exc (A), we have a long exact

sequence
51' 61'7
s Tigr (X)) = Tin (X) = Tin (X2) = T (X0) = T (X) = T (X2) = Tt (X1) = - = To (X1) = Tp (3

Definition 4.26. A left §-functor is universal if for any left o-functor T" = (17, 6}) -, given together

1771

with fo : To — T, there exists a unique extension f; : T; — T} commuting with §;’s.

Definition 4.27. (Grothendieck) Let F' : A — B be a right exact functor, then its classical left

derived functor LF is a universal left é-functor (L; F, d;),5, with the property LoF = F.

Dually, we can define right é-functors T = (Tia‘si)izo of additive functors T; : A — B and
morphisms of functors 0; : T; (X1) — Ti+1 (X2) such that for any short exact sequence 0 — X; —

X — X9 — 0 in Exc (A), we have a long exact sequence
[ 51‘7 51
0—)T0 (XQ) *)To (X) *)To (Xl) ‘O—)Tl (Xg) — e —)T‘Z;l (Xl) —1>E(X2) *)TZ(X) *)T’Z(Xl) .)T%Jrl (XQ) —

Definition 4.28. Let F': A — B be a left exact functor, then its classical right derived functor RF

is a universal right J-functor (R;F’,d;);5q with the property RoF ~ F.

Main Problem: which conditions on A and B and F' ensure the existence of derived functors?
How to compute them?
There are different conditions, but the simplest and universal (in the sense that this condition

only depends on A) condition is given by the following theorem.
Theorem 4.8. If A has enough projectives, then every right exact functor has a left derived functor.

Theorem 4.9. If A has enough injectives, then every left exact functor has a right derived functor.
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Construction: Assume that A has enough projectives. Given any object X € Ob (A), there is an

epimorphism €% : PY — X with P° projective in A.

Take X' = Ker (°) € Ob(A), there exists ' : P~ — X~ with P~! projective. Iteratively we
can get a complex

_2 1
pr=|..ap2ip1d p

in A with each P%,i < 0 projective and £* : P®* — X is a surjective quasi-isomorphism, where

X =[0— X — 0] as a complex.

Definition 4.29. If A has enough projective, every X € Ob (A) can be covered by quasi-isomorphism

e®: P* — X°*, and it’s called a projective resolution of X.

Exercise 4.14. Let X* be a bounded complex (X* = 0,7 > 0) in Com (A), then there exists P*

with quasi-isomorphism €® : P* — X°® called a projective resolution of X°®.
Projective resolutions are not unique, but they have the following properties.

Lemma 4.11. If f : X — Y is a morphism in A, ex : P* — X and ey : Q® — Y are two projective
resolutions, then there exists f* : P* — Q® in Com (A) such that

P. f. Q.

5Xi f |ov

X —Y

and

(P )

Exlz EY\LZ
f

X Y

where H® (f’) =~ f.
Proof. Put P/ = X,d% =¢x, Q' = Y,dOQ = ey, then
d72

dO
[~--—>P‘2—>P_1—>PO—P>P’—>O
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and

_ d0
[~--—>Q_2ﬂ>Q_1—>QO—Q>Q’—>O

are acyclic, with P;, Q;,14,j < 0 projective.

Put f' = f: P' = @', we will prove the existence of f¥: P¥ — QF by induction on k. Assume
that fFF1, fE+2 ... fO exists, define @F = f*! o df. Since di™ o gp = fF2odpt! o dfy = 0,
Imep C Ker <d’g2+1> = Im (d’é) By projectivity of P¥  there exists f* : P* — QFsuch that
deofk:(pk:karlodl]cD_

dk, ditt
Pk Pk—l—l Pk+2

‘ k
®
fk | lfk«kl lkar?
\ dk korl

Qk A Qk:-i-l Q ka—i—?

Next, if there are two lifts f®,g®* : P* — Q°® are two lifts of X i> Y, we need to show there

exists h¥ ;. P¥ — Qkilsuch that fk — gk = hltlg d'fg + dg_l o hk.

k—1 k
d~; dk,

Pk:

. pk—1 ph+1

FEHL Gkt

Qk—H

Set hY = 0 and construct A* by induction. Assume there exists h*+1 AF*2 ... KO define ¢* =
& —gF —rtlodk . PP — QF and notice that d’é ok = (ka — gt — d’é o hk“) odt =
hE+2 o d];)“ o d’lg =0, so Im (1/)’“) C Ker (d’é) =Im (dlgl), therefore there exists h* : P¥ — QF

such that dgfl o hF =k = fk — gk — phtlo d’f;. O
Corollary 4.10.

1. Ifex : P* = X and £x : P* — X are two resolutions, then there exists f® : P* — P* and

g*: P* — P* such that
o
P P

|
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and f* 0 g = Idy, g* o f* = Idj,

2. If f*: P* = Q°® is a morphism from projective to acyclic complexes, then f® ~ 0.

Construction of Left Derived Functors

Assume that A has enough projections. Let F : A — B be a right exact functor. To define LF,

choose for any X € Ob(A) a projective resolution ex : P* — X, define I; F : A — B on
Objects: (L;F) (X) = H""(F(P*))
Morphisms: for f: X — Y, define a lift f: Py — PS, and (LiF) (f) = H™ (F ( f)>

Lemma implies that this definition is well-defined, i.e. independent of the choice of f and the

choice of resolution.
Theorem 4.10. (Constructive) (LiF);> is the classical left derived functor of F.

Proof. Step 1: Construct ¢§; making (IL; F, 6i)i20 a left §-functor.

Step 2: Show that LoF = F. Apply F to the resolution P~! — P’ — X — 0, X € Ob(A).
Since F is right exact, FP~! L_l) FPY 5 FX — 0 is exact, so H° (FPO) = Coker (Fd_l) =
F (Cokerd™!) = FX.

Step 3: Show universality. Use the following Grothendieck’s lemma. Note that L;F' (P) =
0,Vi > 0 whenever P is projective, because if P is projective, [0 — P — 0] M pisa projective
resolution of P, then FP = [0 — P — 0], and H*(FP) = 0,Vi # 0. Therefore (L;F, 8i)i>0 18

coeffaceable, and hence universal. O

Definition 4.30. A functor F' : A — B is called coeffaceable if for any X € Ob(A), there exists
P € Ob(A) with epimorphism f : P — X such that F'(f) = 0.

Lemma 4.12. If T = (T;, 5@‘)120 18 a left d-functor such that T; is coeffaceable, then T is universal.
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